470 resultados para Acoplamento bilinear
Resumo:
Originally aimed at operational objectives, the continuous measurement of well bottomhole pressure and temperature, recorded by permanent downhole gauges (PDG), finds vast applicability in reservoir management. It contributes for the monitoring of well performance and makes it possible to estimate reservoir parameters on the long term. However, notwithstanding its unquestionable value, data from PDG is characterized by a large noise content. Moreover, the presence of outliers within valid signal measurements seems to be a major problem as well. In this work, the initial treatment of PDG signals is addressed, based on curve smoothing, self-organizing maps and the discrete wavelet transform. Additionally, a system based on the coupling of fuzzy clustering with feed-forward neural networks is proposed for transient detection. The obtained results were considered quite satisfactory for offshore wells and matched real requisites for utilization
Resumo:
Multivariate orthogonal polynomials in D real dimensions are considered from the perspective of the Cholesky factorization of a moment matrix. The approach allows for the construction of corresponding multivariate orthogonal polynomials, associated second kind functions, Jacobi type matrices and associated three term relations and also Christoffel-Darboux formulae. The multivariate orthogonal polynomials, their second kind functions and the corresponding Christoffel-Darboux kernels are shown to be quasi-determinants as well as Schur complements of bordered truncations of the moment matrix; quasi-tau functions are introduced. It is proven that the second kind functions are multivariate Cauchy transforms of the multivariate orthogonal polynomials. Discrete and continuous deformations of the measure lead to Toda type integrable hierarchy, being the corresponding flows described through Lax and Zakharov-Shabat equations; bilinear equations are found. Varying size matrix nonlinear partial difference and differential equations of the 2D Toda lattice type are shown to be solved by matrix coefficients of the multivariate orthogonal polynomials. The discrete flows, which are shown to be connected with a Gauss-Borel factorization of the Jacobi type matrices and its quasi-determinants, lead to expressions for the multivariate orthogonal polynomials and their second kind functions in terms of shifted quasi-tau matrices, which generalize to the multidimensional realm, those that relate the Baker and adjoint Baker functions to ratios of Miwa shifted tau-functions in the 1D scenario. In this context, the multivariate extension of the elementary Darboux transformation is given in terms of quasi-determinants of matrices built up by the evaluation, at a poised set of nodes lying in an appropriate hyperplane in R^D, of the multivariate orthogonal polynomials. The multivariate Christoffel formula for the iteration of m elementary Darboux transformations is given as a quasi-determinant. It is shown, using congruences in the space of semi-infinite matrices, that the discrete and continuous flows are intimately connected and determine nonlinear partial difference-differential equations that involve only one site in the integrable lattice behaving as a Kadomstev-Petviashvili type system. Finally, a brief discussion of measures with a particular linear isometry invariance and some of its consequences for the corresponding multivariate polynomials is given. In particular, it is shown that the Toda times that preserve the invariance condition lay in a secant variety of the Veronese variety of the fixed point set of the linear isometry.
Resumo:
A determinação das propriedades dinâmicas de uma estrutura é um aspeto bastante importante para a determinação do comportamento dinâmico dessa estrutura. A análise dinâmica do sistema faz já parte do projeto e dimensionamento de uma estrutura pois ao longo dos anos foram surgindo vários problemas com vibrações na estrutura que podem ter várias consequências, fadiga acelerada, desconforto no caso de ser uma estrutura utilizada por pessoas regularmente ou até mesmo a rotura da estrutura. Esta análise, tal como uma análise estática, geralmente parte de um modelo analítico ou numérico, chamados métodos diretos, obtendo depois os resultados que serão esperados na realidade. No entanto, em estruturas complexas, onde possam haver ligações do tipo aparafusadas, rebitadas, soldadas ou ainda apoios elásticos ou cintas, torna-se mais complicado realizar o modelo analítico ou numérico do sistema pois é mais difícil encontrar as propriedades dos vários materiais ou pode mesmo ser complicado chegar a determinada união para medir. Assim, começaram a ser utilizados os chamados métodos inversos, onde se partem de resultados obtidos experimentalmente para assim se conseguir identificar as propriedades do sistema. As funções de resposta em frequência (FRF) tornaram-se num dos recursos mais usados neste tipo de método pois representam a resposta de um sistema a uma excitação, ou seja, resultados obtidos experimentalmente, e a partir delas é possível determinar todos os modelos do sistema, modal e espacial. Esta ferramenta tem sido bastante estudada e foram já desenvolvidos métodos de acoplamento que permitem ir medindo experimentalmente subestruturas e depois formar a estrutura global. Neste trabalho é abordada a questão onde não se conhecem as respostas dinâmicas da estrutura e se procura estimar essas respostas a partir do conhecimento numérico de parte da estrutura.
Resumo:
Bilinear pairings can be used to construct cryptographic systems with very desirable properties. A pairing performs a mapping on members of groups on elliptic and genus 2 hyperelliptic curves to an extension of the finite field on which the curves are defined. The finite fields must, however, be large to ensure adequate security. The complicated group structure of the curves and the expensive field operations result in time consuming computations that are an impediment to the practicality of pairing-based systems. The Tate pairing can be computed efficiently using the ɳT method. Hardware architectures can be used to accelerate the required operations by exploiting the parallelism inherent to the algorithmic and finite field calculations. The Tate pairing can be performed on elliptic curves of characteristic 2 and 3 and on genus 2 hyperelliptic curves of characteristic 2. Curve selection is dependent on several factors including desired computational speed, the area constraints of the target device and the required security level. In this thesis, custom hardware processors for the acceleration of the Tate pairing are presented and implemented on an FPGA. The underlying hardware architectures are designed with care to exploit available parallelism while ensuring resource efficiency. The characteristic 2 elliptic curve processor contains novel units that return a pairing result in a very low number of clock cycles. Despite the more complicated computational algorithm, the speed of the genus 2 processor is comparable. Pairing computation on each of these curves can be appealing in applications with various attributes. A flexible processor that can perform pairing computation on elliptic curves of characteristic 2 and 3 has also been designed. An integrated hardware/software design and verification environment has been developed. This system automates the procedures required for robust processor creation and enables the rapid provision of solutions for a wide range of cryptographic applications.
Resumo:
Un sistema di cifratura IBE (Identity-Based Encription Scheme) si basa su un sistema crittografico a chiave pubblica, costituita però in questo caso da una stringa arbitraria. Invece di generare una coppia casuale di chiavi pubbliche e private e pubblicare la prima, l'utente utilizza come chiave pubblica la sua "identità", ovvero una combinazione di informazioni opportune (nome, indirizzo...) che lo identifichino in maniera univoca. In questo modo ad ogni coppia di utenti risulta possibile comunicare in sicurezza e verificare le reciproche firme digitali senza lo scambio di chiavi private o pubbliche, senza la necessità di mantenere una key directory e senza dover ricorrere ogni volta ai servizi di un ente esterno. Nel 2001 Boneh e Franklin proposero uno schema completamente funzionante con sicurezza IND-ID-CCA, basato su un analogo del problema computazionale di Diffie-Hellman e che da un punto di vista tecnico-matematico utilizza la crittografia su curve ellittiche e la mappa bilineare Weil Pairing.