981 resultados para Accumulation of nutrients
Resumo:
Although the effect of salinity on plant growth has been the focus of a substantive research effort, much of this research has failed to adequately separate the various growth limiting aspects of salinity; thus the results are confounded by multiple factors. Eight perennial grass species were grown in a sand culture system dominated by NaCl (electrical conductivities (ECs) between 1.4 and 38 dS m 1), with sufficient Ca added to each treatment to ensure that Na-induced Ca deficiency did not reduce growth. Of the eight perennial grass species examined, Chloris gayana cv. Pioneer (Rhodes grass) was the most salt tolerant species, whilst in comparison, Chrysopogon zizanioides cv. Monto (vetiver) was of only moderate tolerance. However, observed salinity tolerances tended to be lower than those expected from published values based on the threshold salinity model (bent stick model). This discrepancy may be due in part to differences in the evapotranspirational demand between studies; an increase in demand accelerating the accumulation of Na in the shoots and hence decreasing apparent salinity tolerance. It was also observed that the use of a non-saline growth period to allow seed germination and establishment results in the overestimation of vegetative salinity tolerance if not taken into consideration. This is particularly true for species of low salt tolerance due to their comparatively rapid growth in the non-saline medium compared to that at full salinity.
Resumo:
The catalytic activities of Ni/gamma-Al2O3 catalysts prepared using different nickel precursor compounds were studied for the reaction of methane reforming with CO2. It is found that the nickel precursor employed in the catalyst preparation plays an important role. The catalyst based on nickel nitrate exhibited higher catalytic activity and stability over a 24-h test period than the other two catalysts derived from nickel chloride and nickel acetylacetonate. A comprehensive characterisation of the catalysts showed that the weak interaction between Ni particles and gamma-Al2O3 resulted in more active sites on Ni nitrate-derived Ni/gamma-Al2O3 catalyst. Coking studies showed that carbon deposition on Ni catalysts derived from inorganic precursors (nitrate and chloride) were more severe than on the organic precursor-derived catalyst. However, the Ni nitrate-derived catalyst was found to have the highest stability (or lowest deactivation rate) mainly due to the active carbon species (-C-C-) of the resulting graphitic structure and their close contact with the metal particles. In contrast, the carbon formed on Ni-AA catalyst (from Ni acetylacetonate) is dominated by inactive -CO-C- species, thus leading to a rapid accumulation of carbon in this catalyst and more severe deactivation. (C) 1998 Elsevier Science B.V.
Resumo:
The pentadentate H(3)bhci [1,3,5-trideoxy-1,3-bis((2-hydroxybenzyl)amino)-cis-inistol] and its bifunctionalized analogue H(3)bhci-glu-H [1,3,5-trideoxy-1,3-bis((2-hydroxybenzyl)amino)-5-glutaramido-cis-inositol] were synthesized, and their coordination chemistry was investigated with inactive rhenium, with no carrier added Re-188 and with carrier added Re-186. The neutral Re(V) complexes [ReO-(bhci)] and [ReO(bhci-glu-H)] are formed in good yields starting from [ReOCl3(P(C6H5)(3))(2)] or in quantitative yield directly from [(ReO4)-Re-186/188](-) in aqueous solution by reduction with Sn(II) or Sn(0). The X-ray structures of [ReO(bhci)] and [ReO(bhci-glu-H)] were elucidated revealing pentadentate side on coordination of the ligands to the Re=O core. The basic cyclohexane frame adopts a chair form in the case of [ReO(bhci)] and a twisted boat form in the case of [ReO(bhci-glu-H)]. [ReO(bhci)] crystallizes in the monoclinic space group C2/c with a = 27.425(3), b = 14.185(1), c = 19.047(2) Angstrom, and beta = 103.64(2)degrees and [ReO(bhci-glu-H)] in the monoclinic space group P2(1)/c with a = 13.056(3), b = 10.180(1), c = 22.378(5) Angstrom and beta = 98.205(9)degrees Both Re-188 complexes are stable in human serum for at least 3 days without decomposition. After injection into mice, [ReO(bhci-glu)](-) is readily excreted through the intestines, while [ReO(bhci)] is excreted by intestines, liver, and the kidneys. TLC investigations of the urine showed exclusively the complexes [ReO(bhci-glu-H)] and [ReO(bhci)], respectively, and no decomposition products. For derivatization of antibodies, the carboxylic group of [ReO(bhci-glu-H)] was activated with N-hydroxysuccinimide, which required unusually vigorous reaction conditions (heating). The anti colon cancer antibody mAb-35 [IgG and F(ab')(2) fragment] was labeled with [(ReO)-Re-186/188(bhci-glu)] to a specific activity of up to 1.5 mCi/mg (55 MBq/mg) with full retention of immunoreactivity. Labeling yields followed pseudo-first-order kinetics in antibody concentration with the ratio of rates between aminolysis and hydrolysis being about 2. Biodistributions of Re-186-labeled intact mAb-35 as well as of its F(ab')(2) fragment in tumor-bearing nude mice revealed good uptake by the tumor with only low accumulation of radioactivity in normal tissue.
Resumo:
Previously we described activating mutations of h beta(c), the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, h beta(c)FI Delta, is able to confer growth factor-independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the h beta(c)FI Delta cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in h beta(c) may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic h beta(c) activation has the potential to contribute to pathological events in the central nervous system.
Resumo:
A multisegment percolation system (MSPS) consisting of 25 individual collection wells was constructed to study the effects of localised soil heterogeneities on the transport of solutes in the vadose zone. In particular, this paper discusses the transport of water and nutrients (NO3-, Cl-, PO43-) through structurally stable, free-draining agricultural soil from Victoria, Australia. A solution of nutrients was irrigated onto the surface of a large undisturbed soil core over a 12-h period. This was followed by a continuous irrigation of distilled water at a fate which did not cause pending for a further 18 days. During this time, the volume of leachate and the concentration of nutrients in the leachate of each well were measured. Very significant variation in drainage patterns across a small spatial scale was observed. Leaching of nitrate-nitrogen and chloride from the core occurred two days after initial application. However, less than 1% of the total applied phosphate-phosphorus leached from the soil during the 18-day experiment, indicating strong adsorption. Our experiments indicate considerable heterogeneity in water flow patterns and solute leaching on a small spatial scale. These results have significant ramifications for modelling solute transport and predicting nutrient loadings on a larger scale.
Resumo:
Recently, a bi-allelic polymorphism in the glucocorticoid receptor gene (GRL) has been shown to be associated with individuals at high risk of developing hypertension and accumulation of abdominal visceral fat, a known risk factor for cardiovascular disease. The evaluate the role of GRL in essential hypertension and obesity, case-control studies were conducted using 88 hypertensive, 123 normotensive, 150 lean and 94 obese subjects. Genotypes for a highly polymorphic microsatellite marker (D5S207) located within 200 kb of the glucocorticoid receptor gene, were determined by PCR. Allele frequencies between hypertensive and normotensive groups were significantly (P = 0.0005) different whereas no significant differences were observed between lean and obese populations. In conclusion, the results suggest that the glucocorticoid receptor gene or perhaps another gene located in close proximity and in linkage disequilibrium with D5S207, is involved in hypertension development
Resumo:
We have grown surfactant-templated silicate films at the air-water interface using n-alkyltrimethylammonium bromide and chloride in an acid synthesis with tetraethyl orthosilicate as the silicate source. The films have been grown with and without added salt (sodium chloride, sodium bromide) and with n-alkyl chain lengths from 12 to 18, the growth process being monitored by X-ray reflectometry. Glassy, hexagonal, and lamellar structures have been produced in ways that are predictable from the pure surfactant-water phase diagrams. The synthesis appears to proceed initially through an induction period characterized by the accumulation of silica-coated spherical micelles near the surface. All syntheses, except those involving C(12)TACl, show a sudden transformation of the spherical micellar phase to a hexagonal phase. This occurs when the gradually increasing ionic strength and/or changing ethanol concentration is sufficient to change the position of boundaries within the phase diagram. A possible mechanism for this to occur may be to induce a sphere to rod transition in the micellar structure. This transformation, as predicted from the surfactant-water phase diagram, can be induced by addition of salts and is slower for chloride than bromide counteranions. The hexagonal materials change in cell dimension as the chain length is changed in a way consistent with theoretical model predictions. All the materials have sufficiently flexible silica frameworks that phase interconversion is observed both from glassy to hexagonal and from hexagonal, to lamellar and vice versa in those surfactant systems where multiple phases are found to exist.
Resumo:
Lymphedema is an accumulation of lymph fluid in the limb resulting from an insufficiency of the lymphatic system. It is commonly associated with surgical or radiotherapy treatment for breast cancer. As with many progressively debilitating disorders, the effectiveness of treatment is significantly improved by earlier intervention. Multiple frequency bioelectrical impedance analysis (MFBIA) previously was shown to provide accurate relative measures of lymphedema in the upper limb in patients after treatment for breast cancer, This presentation reports progress to date on a three-year prospective study to evaluate the efficacy of MFBIA to predict the early onset of lymphedema in breast cancer patients following treatment. Bioelectrical impedance measurements of each upper limb were recorded in a group of healthy control subjects (n = 50) to determine the ratio of extracellular limb-fluid volumes. From this population, the expected normal range of asymmetry (99.7% confidence) between the limbs was determined, Patients undergoing surgery to treat breast cancer were recruited into the study, and MFBIA measurements were recorded presurgery, at one month and three months after surgery, and then at two-month intervals for up to 24 months postsurgery, When patients had an MFBIA measure outside the 99.7% range of the control group, they were referred to their physician for clinical assessment. Results to date: Over 100 patients were recruited into the study over the past two years; at present, 19 have developed lymphedema and, of these, 12 are receiving treatment. In each of these 19 cases, MFBIA predicted the onset of the condition up to four months before it could be clinically diagnosed. The false-negative rate currently is zero, The study will continue to monitor patients over the remaining year to accurately ascertain estimates of specificity and sensitivity of the procedure.
Resumo:
The movement of chemicals through the soil to the groundwater or discharged to surface waters represents a degradation of these resources. In many cases, serious human and stock health implications are associated with this form of pollution. The chemicals of interest include nutrients, pesticides, salts, and industrial wastes. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and nonequilibrium between soil constituents, water, and solutes. A multiple sample percolation system (MSPS), consisting of 25 individual collection wells, was constructed to study the effects of localized soil heterogeneities on the transport of nutrients (NO3-, Cl-, PO43-) in the vadose zone of an agricultural soil predominantly dominated by clay. Very significant variations in drainage patterns across a small spatial scale were observed tone-way ANOVA, p < 0.001) indicating considerable heterogeneity in water flow patterns and nutrient leaching. Using data collected from the multiple sample percolation experiments, this paper compares the performance of two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR), and a two-region preferential flow model (TRM) suitable for modelling nonequilibrium transport. These results have implications for modelling solute transport and predicting nutrient loading on a larger scale. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The gamma-aminobutyric acid type A (GABA(A)) receptor mediates fast inhibitory synaptic transmission in the CNS. Dysfunction of the GABA(A) receptor would be expected to cause neuronal hyperexcitability, a phenomenon linked with epileptogenesis. We have investigated the functional consequences of an arginine-to-glutamine mutation at position 43 within the GABA(A) gamma(2)-subunit found in a family with childhood absence epilepsy and febrile seizures. Rapid-application experiments performed on receptors expressed in HEK-293 cells demonstrated that the mutation slows GABA(A) receptor deactivation and increases the rate of desensitization, resulting in an accumulation of desensitized receptors during repeated, short applications. In Xenopus laevis oocytes, two-electrode voltage-clamp analysis of steady-state currents obtained from alpha(1)beta(2)gamma(2) or alpha(1)beta(2)gamma(2)(R43Q) receptors did not reveal any differences in GABA sensitivity. However, differences in the benzodiazepine pharmacology of mutant receptors were apparent. Mutant receptors expressed in oocytes displayed reduced sensitivity to diazepam and flunitrazepam but not the imiclazopyricline zolpidem. These results provide evidence of impaired GABA(A) receptor function that could decrease the efficacy of transmission at inhibitory synapses, possibly generating a hyperexcitable neuronal state in thalamocortical networks of epileptic patients possessing the mutant subunit.
Resumo:
A xylanase was cloned from Aspergillus niveus and successfully expressed in Aspergillus nidulans (XAN). The full-length gene consisted of 890 bp and encoded 275 mature amino acids with a calculated mass of 31.3 kDa. The deduced amino acid sequence was highly homologous with the xylanase belonging to family 11 of the glycoside hydrolases. The recombinant protein was purified to electrophoretic homogeneity by anion-exchange chromatography and gel filtration. The optima of pH and temperature for the recombinant enzyme were 5.0 and 65 degrees C, respectively. The thermal stability of the recombinant xylanase was extremely improved by covalent immobilization on glyoxyl agarose with 91.4% of residual activity after 180 min at 60 degrees C, on the other hand, the free xylanase showed a half-life of 9.9 min at the same temperature. Affinity chromatography on Concanavalin A- and Jacalin-agarose columns followed by SDS-PAGE analyses showed that the XAN has O- and N-glycans. XAN promotes hydrolysis of xylan resulting in xylobiose, xylotriose and xylotetraose. Intermediate degradation of xylan resulting in xylo-oligomers is appealing for functional foods as the beneficial effect of oligosaccharides on gastrointestinal micro flora includes preventing proliferation of pathogenic intestinal bacteria and facilitates digestion and absorption of nutrients. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Proteins stored in insect hemolymph may serve (is a source of amino acids and energy for metabolism, and development. The expression of the main storage proteins was assessed in bacterial-challenged honey bees using real-time (RT)-PCH and Western blot.. After ensuring that. the immune system had, been activated by measuring the ensuing expression (, the innate immune response genes, defensin-1 (def-1) and prophenoloxidase (pro PO), we verified the expression of four genes encoding storage proteins. The levels of vitellogenin (vg) mRNA and of the respective protein. were significantly lowered in bees injected with bacteria or water only (injury). An equivalent response was observed in orally-infected bees. The levels of apolipophorin II/I (apoLP-II/I) and hexamerin (hex 70a) mRNAs did not significantly change, but levels of Hex 70a protein subunit showed a substantial decay after bacterial challenge or injury. Infection also caused a strong reduction in the levels of apoLP-III transcripts. Our findings are consistent with a down-regulation, of the express and accumulation of storage proteins as a consequence of activation of the immune system, suggesting that this phenomenon. represents a strategy to redirect resources to combat injury or infection. (C) 2009 Wiley Periodicals, Inc.
Resumo:
Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine > spermidine > putrescine. Spermidine affected K-0.5 values for Na+ with minor alterations in K-0.5 values for K+ and N-H-4(+), causing a decrease in maximal velocities under saturating Na+, K+ and NH4+ concentrations. Phosphorylation measurements in the presence of 20 mu M ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na+, both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na+, the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na+ at the Na+-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Streams located in areas of sugarcane cultivation receive high concentrations of metal ions from soils of the adjacent areas causing accumulation of metals in the aquatic sediment. This impact results in environmental problems and leads to bioaccumulation of metal ions in aquatic organisms. In the present study, metal concentrations in different predatory insects were studied in streams near sugarcane cultivation and compared to reference sites. Possible utilisation of predatory insects as bioindicators of metal contamination due to sugarcane cultivation from 13 neotropical streams was evaluated. Ion concentrations of Al, Cd, Cr, Cu, Zn, Fe, and Mn in adult Belostomatidae (Hemiptera) and in larvae of Libellulidae (Odonata) were analysed. Nine streams are located in areas with sugarcane cultivation, without riparian vegetation (classified as impacted area) and four streams were located in forested areas (reference sites). Metal concentrations in insects were higher near sugarcane cultivations than in control sites. Cluster analysis, complemented by an ANOSIM test, clearly showed that these insect groups are good potential bioindicators of metal contamination in streams located in areas with sugarcane cultivation and can be used in monitoring programmes. We also conclude that Libellulidae appeared to accumulate higher concentrations of metals than Belostomatidae.
Resumo:
A number of contemporary studies rightly emphasize the notion that policy outcomes result from institutional determinants. But as a growing literature on institutional development notes, these institutions are themselves impermanent. Sometimes, in crisis moments, institutions are replaced wholesale. More frequently, institutions evolve gradually over time. Using the Brazilian Central Bank as a case study, this article illustrates that the policy-making process itself can be a central driver of gradual institutional development, with institutions evolving through the accumulation of policy choices made over many years and under different policymakers in response to contemporaneous events and unforeseeable economic and political challenges.