989 resultados para AXONAL PROJECTIONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim To compare the ability of scanning laser polarimeter (SLP) with variable corneal compensation (GDx VCC) and optical coherence tomograph (Stratus OCT) to discriminate between eyes with band atrophy (BA) of the optic nerve and healthy eyes. Methods The study included 37 eyes with BA and temporal visual field (VF) defects from chiasmal compression, and 29 normal eyes. Subjects underwent standard automated perimetry (SAP) and retinal nerve fibre layer (RNFL) scans using GDx VCC and Stratus OCT. The severity of the VF defects was evaluated by the temporal mean defect (TMD), calculated as the average of 22 values of the temporal total deviation plot on SAP. Receiver operating characteristic (ROC) curves were calculated. Pearson`s correlation coefficients were used to evaluate the relationship between RNFL thickness parameters and the TMD. Results No significant difference was found between the ROC curves areas (AUCs) for the GDx VCC and Stratus OCT with regard to average RNFL thickness (0.98 and 0.99, respectively) and the superior (0.94; 0.95), inferior (0.96; 0.97), and nasal (0.92; 0.96) quadrants. However, the AUC in the temporal quadrant (0.77) was significantly smaller (P < 0.001) with GDx VCC than with Stratus OCT (0.98). Lower TMD values were associated with smaller RNFL thickness in most parameters from both equipments. Conclusion Adding VCC resulted in improved performance in SLP when evaluating eyes with BA, and both technologies are sensitive in detecting average, superior, inferior, and nasal quadrant RNFL loss. However, GDx VCC still poorly discriminates RNFL loss in the temporal quadrant when compared with Stratus OCT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design: Data mining of single nucleotide polymorphisms (SNPs) in gene pathways related to spinal cord injury (SCI). Objectives: To identify gene polymorphisms putatively implicated with neuronal damage evolution pathways, potentially useful to SCI study. Setting: Departments of Psychiatry and Orthopedics, Faculdade de Medicina, Universidade de Sao Paulo, Brazil. Methods: Genes involved with processes related to SCI, such as apoptosis, inflammatory response, axonogenesis, peripheral nervous system development and axon ensheathment, were determined by evaluating the `Biological Process` annotation of Gene Ontology (GO). Each gene of these pathways was mapped using MapViewer, and gene coordinates were used to identify their polymorphisms in the SNP database. As a proof of concept, the frequency of subset of SNPs, located in four genes (ALOX12, APOE, BDNF and NINJ1) was evaluated in the DNA of a group of 28 SCI patients and 38 individuals with no SC lesions. Results: We could identify a total of 95 276 SNPs in a set of 588 genes associated with the selected GO terms, including 3912 nucleotide alterations located in coding regions of genes. The five non-synonymous SNPs genotyped in our small group of patients, showed a significant frequency, reinforcing their potential use for the investigation of SCI evolution. Conclusion: Despite the importance of SNPs in many aspects of gene expression and protein activity, these gene alterations have not been explored in SCI research. Here we describe a set of potentially useful SNPs, some of which could underlie the genetic mechanisms involved in the post trauma spinal cord damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have demonstrated that phrenic nerves` large myelinated fibers in streptozotocin (STZ)-induced diabetic rats show axonal atrophy, which is reversed by insulin treatment. However, studies on structural abnormalities of the small myelinated and the unmyelinated fibers in the STZ-model of neuropathy are limited. Also, structural changes in the endoneural vasculature are not clearly described in this model and require detailed study. We have undertaken morphometric studies of the phrenic nerve in insulin-treated and untreated STZ-diabetic rats and non-diabetic control animals over a 12-week period. The presence of neuropathy was assessed by means of transmission electron microscopy, and morphometry of the unmyelinated fibers was performed. The most striking finding was the morphological evidence of small myelinated fiber neuropathy due to the STZ injection, which was not protected or reversed by conventional insulin treatment. This neuropathy was clearly associated with severe damage of the endoneural vessels present on both STZ groups, besides the insulin treatment. The STZ-diabetes model is widely used to investigate experimental diabetic neuropathies, but few studies have performed a detailed assessment of either unmyelinated fibers or capillary morphology in this animal model. The present study adds useful information for further investigations on the ultrastructural basis of nerve function in diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aging affects peripheral nerve function and regeneration in experimental models but few literature reports deal with animals aged more than one year. We investigated morphological and morphometric aspects of the sural nerve in aging rats. Female Wistar rats 360, 640 and 720 days old were killed, proximal and distal segments of the right and left sural nerves were prepared for light microscopy and computerized morphometry. No morphometric differences between proximal and distal segments or between right and left sides at the same levels were found in all experimental groups. No increase in fiber and axon sizes was observed from 360 to 720 days. Likewise, no difference in total myelinated fiber number was observed between groups. Myelinated fiber population distribution was bimodal, being the 720-days old animals` distribution shifted to the left, indicating a reduction of the fiber diameters. The 9 ratio distribution of the 720-days old animals` myelinated fiber was also shifted to the left, which suggests axonal atrophy. Morphological alterations due to aging were observed, mainly related to the myelin sheath, which suggests demyelination. Large fibers were more affected than the smaller ones. Axon abnormalities were not as common or as obvious as the myelin changes and Wallerian degeneration was rarely found. These alterations were observed in all experimental groups but were much less pronounced in rats 360 days old and their severity increased with aging. in conclusion, the present study indicates that the aging neuropathy present in the sural nerve of female rats is both axonal and demyelinating. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kallmann syndrome (KS), characterized by the association of hypogonadotropic hypogonadism and anosmia, may present many other phenotypic abnormalities, including neurologic features as involuntary movements, called mirror movements (MM). MM etiology probably involves a complex mechanism comprising corticospinal tract abnormal development associated with deficient contralateral motor cortex inhibitory system. In this study, in order to address previous hypotheses concerning MM etiology, we identified and quantified white matter (WM) alterations in 21 KS patients, comparing subjects with and without MM and 16 control subjects, using magnetization transfer ratio (MTR) and T2 relaxometry (R2). Magnetization transfer and 12 double-echo images were acquired in a 1.5 T system. MTR and R2 were calculated pixel by pixel to initially create individual maps, and then, group average maps, co-registered with MNI305 stereotaxic coordinate system. After analysis of selected regions of interest, we demonstrated areas with higher 12 relaxation time and lower MTR values in KS patients, with and without MM, differently involving corticospinal tract projection, frontal lobes and corpus callosum. Higher MTR was observed only in pyramidal decussation when compared in both groups of patients with controls. In conclusion, we demonstrated that patients with KS have altered WM areas, presenting in a different manner in patients with and without MM. These data suggest axonal loss or disorganization involving abnormal pyramidal tracts and other associative/connective areas, relating to the presence or absence of MM. We also found a different pattern of alteration in pyramidal decussation, which can represent the primary area of neuronal disarrangement. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The medial prefrontal cortex (MPFC) is involved in cardiovascular control. MPFC electrical stimulation has been reported to cause depressor and bradycardic responses in anesthetized rats. Although the pathway involved is yet unknown, there is evidence indicating the existence of a relay in the lateral hypothalamus (LH). The medial forebrain bundle (MFB) that courses in the lateral portion of the LH carries the vast majority of telencephalic afferent as well efferent projections, including those from the MPFC. To evaluate if the hypotensive pathway originating in the MPFC courses the MFB, we studied the effect of coronal or sagittal knife cuts through the LH and other brain areas on the cardiovascular responses to MPFC electrical stimulation. Knife cuts were performed using blades I to 6 mm wide. Results indicate that the neural pathway descending from the MFB decussates early in the vicinity of MPFC, crossing the midline within the corpus callosurn and yielding two descending pathways that travel rostro-caudally in the lateral portion of the LH, within the MFB. The decussation was confirmed by histological analysis of brain sections processed after the injection of biotinilated dextran amine in the site of the stimulation in the MPFC. Because knife cuts through the LH ipsilateral had minimal effects on the cardiovascular responses and knife cuts performed contralateral to the stimulated MPFC had no effect on the response to MPFC stimulation, data indicate that the contralateral limb of the pathway may be only activated as an alternative pathway when the ipsilateral pathway is blocked. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: The dorsal periaqueductal gray area (dPAG) is involved in cardiovascular modulation. Previously, we reported that noradrenaline (NA) microinjection into the dPAG caused a pressor response that was mediated by vasopressin release into the circulation. However, the neuronal pathway that mediates this response is as yet unknown. There is evidence that chemical stimulation of the diagonal band of Broca (dbB) also causes a pressor response mediated by systemic vasopressin release. In the present study, we evaluated the participation of the dbB in the pressor response caused by NA microinjection into the dPAG as well as the existence of neural connections between these areas. Main methods: With the above goal, we verified the effect of the pharmacological ablation of the dbB on the cardiovascular response to NA microinjection into the dPAG of unanesthetized rats. In addition, we microinjected the neuronal tracer biotinylated-dextran-amine (BDA) into the dPAG and looked for efferent projections from the dPAG to the dbB. Key findings: The pharmacologically reversible ablation of the dbB with local microinjection of CoCl(2) significantly reduced the pressor response caused by NA microinjection (15 nmol/50 nL) into the dPAG. In addition, BDA microinjection into the dPAG labeled axons in the dbB, pointing to the existence of direct connections between these areas. Significance: The present results indicate that synapses within the dbB are involved in the pressor pathway activated by NA microinjection into the VAG and direct neural projection from the dPAG to the dbB may constitute the neuroanatomic substrate for this pressor pathway. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The medial amygdaloid nucleus (MeA) modulates several physiological and behavioral processes and among them, the cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint evokes cardiovascular responses, which are characterized by both elevated blood pressure (BP) and intense heart rate (HR) increase. We presently report effects of MeA pharmacological manipulations on BP and HR responses evoked by acute restraint in rats. Bilateral microinjection of 100 nL of the unspecific synaptic blocker COCl(2) (1 mM) into the MeA increased HR response to acute restraint, without significant effect on the BP response. This result indicates an inhibitory influence of MeA on restraint-evoked HR changes. Injections of the non-selective muscarinic receptor antagonist atropine (3 nmol); the inhibitor of choline uptake hemicholinium (2 nmol) or the selective M(1)-receptor antagonist pirenzepine (6 nmol) caused effects that were similar to those caused by cobalt. These results suggest that local cholinergic neurotransmission and M(1)-receptors mediate the MeA inhibitory influence on restraint-related HR responses. Pretreatment with the M3 receptor antagonist 4-DAMP (4-Diphenylacetoxy-N-methylpiperidine methiodide-2 nmol) did not affect restraint-related cardiovascular responses, reinforcing the idea that M(1)-receptors mediate MeA-related inhibitory influence on restraint-evoked HR increase. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to test the hypothesis that the bed nucleus of the stria terminalis (BST) and noradrenergic neurotransmission therein mediate cardiovascular responses to acute restraint stress in rats. Bilateral microinjection of the non-specific synaptic blocker CoCl2 (0.1nmol/100nl) into the BST enhanced the heart rate (HR) increase associated with acute restraint without affecting the blood pressure increase, indicating that synapses within the BST influence restraint-evoked HR changes. BST pretreatment with the selective 1-adrenoceptor antagonist WB4101 (15nmol/100nl) caused similar effects to cobalt, indicating that local noradrenergic neurotransmission mediates the BST inhibitory influence on restraint-related HR responses. BST treatment with equimolar doses of the 2-adrenoceptor antagonist RX821002 or the -adrenoceptor antagonist propranolol did not affect restraint-related cardiovascular responses, reinforcing the inference that 1-adrenoceptors mediate the BST-related inhibitory influence on HR responses. Microinjection of WB4101 into the BST of rats pretreated intravenously with the anticholinergic drug homatropine methyl bromide (0.2mg/kg) did not affect restraint-related cardiovascular responses, indicating that the inhibitory influence of the BST on the restraint-evoked HR increase could be related to an increase in parasympathetic activity. Thus, our results suggest an inhibitory influence of the BST on the HR increase evoked by restraint stress, and that this is mediated by local 1-adrenoceptors. The results also indicate that such an inhibitory influence is a result of parasympathetic activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diagonal band of Broca (DBB) is involved in cardiovascular control in rats, In the present Study, we report the effect of acute and reversible neurotransmission inhibition in the DBB by bilateral microinjection of the nonselective neurotransmission blocker CoCl(2) (1 mM, 100 nL) on the cardiac baroreflex response in unanesthetized rats. Local DBB neurotransmission inhibition did not affect baseline values of either blood pressure or heart rate, Suggesting no tonic DBB influence oil cardiovascular system activity. However, CoCl(2) microinjections enhanced both the reflex bradycardia associated with blood pressure increases caused by i.v. infusion of phenylephrine and tachycardiac response evoked by blood pressure decreases caused by i.v. infusion of sodium nitroprusside. An increase in baroreflex gain was also observed. Baroreflex returned to control values 60 min after CoCl(2) microinjections, confirming its reversible effect. In conclusion, our data suggest that synapses within DBB have a tonic inhibitory influence on both the cardiac parasympathetic and sympathetic components of the baroreflex. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in 5-HT1A receptor-mediated neurotransmission at the level of the median raphe nucleus (MRN) are reported to affect the expression of defensive responses that are associated with generalized anxiety disorder (e.g. inhibitory avoidance) but not with panic (e.g. escape). The objective of this study was to further explore the involvement of MRN 5-HT1A receptors in the regulation of generalized anxiety-related behaviours. Results of experiment 1 showed that intra-MRN injection of the 5-HT1A/7 receptor agonist 8-OH-DPAT (0.6 nmol) in male Wistar rats impaired the acquisition of inhibitory avoidance, without interfering with the performance of escape in the elevated T-maze test of anxiety. Pre-treatment with the 5-HT1A receptor antagonist WAY-100635 (0.18 nmol) fully blocked this anxiolytic-like effect. As revealed by experiment 2, intra-MRN injection of 8-OH-DPAT (0.6, 3 or 15 nmol) also caused anxiolytic effect in rats submitted to the light-dark transition test, another animal model that has been associated with generalized anxiety. In the same test, intra-MRN injection of WAY-100635 (0.18, 0.37 or 0.74 nmol) caused the opposite effect. Overall, the current findings support the view that MRN 5-HT neurons, through the regulation of 5-HT1A somatodendritic autoreceptors, are implicated in the regulation of generalized anxiety-associated behaviours. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ventral portion of medial prefrontal cortex (vMPFC) is involved in contextual fear-conditioning expression in rats. In the present study, we investigated the role of local N-methyl-D-aspartic acid (NMDA) glutamate receptors and nitric oxide (NO) in vMPFC on the behavioral (freezing) and cardiovascular (increase of arterial pressure and heart rate) responses of rats exposed to a context fear conditioning. The results showed that both freezing and cardiovascular responses to contextual fear conditioning were reduced by bilateral administration of NMDA receptor antagonist LY235959 (4 nmol/200 nL) into the vMPFC before reexposition to conditioned chamber. Bilateral inhibition of neuronal NO synthase (nNOS) by local vMPFC administration of the N omega-propyl-L-arginine (N-propyl, 0.04 nmol/200 nL) or the NO scavenger carboxy-PTI0 (1 nmol/200 A) caused similar results, inhibiting the fear responses. We also investigated the effects of inhibiting glutamate- and NO-mediated neurotransmission in the vMPFC at the time of aversive context exposure on reexposure to the same context. It was observed that the 1st exposure results in a significant attenuation of the fear responses on reexposure in vehicle-treated animals, which was not modified by the drugs. The present results suggest that a vMPFC NMDA-NO pathway may play an important role on expression of contextual fear conditioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is conflicting evidence concerning the role of the bed nucleus of the stria terminalis (BNST) in fear and anxiety-elicited behavior. Most of the studies investigating this role, however, employed irreversible lesions of this nucleus. The objective of the present study was to investigate the effects of an acute and reversible inactivation of the BNST in rats submitted to the Vogel conflict test (VCT) and contextual fear conditioning, two widely employed animal models that are responsive to prototypal anxiolytic drugs. Male Wistar rats were submitted to stereotaxic surgery to bilaterally implant cannulae into the BNST. Ten minutes before the test they received bilateral microinjections of cobalt chloride (COCl(2)) (1 mM/100 nL), a nonselective synapse blocker. COCl(2) produced anxiolytic-like effects in tests, increasing the number of punished licks in the VCT and decreasing freezing behavior and the increase in mean arterial blood pressure and heart rate of animals re-exposed to the context where they had received electrical foot shocks 24 h before. The results indicate that the BNST is engaged in behavioral responses elicited by punished stimuli and aversively conditioned contexts, reinforcing its proposed role in anxiety. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently obtained evidence points to the involvement of the lateral habenular nuclei (LHb) in the mediation of coping defensive responses to threatening/stressful stimuli. Nevertheless, the role of this brain area in the regulation of defensive responses that have been associated with specific subtypes of anxiety disorders recognized in clinical settings is presently unknown. To address this question, we investigated the effects of either electrolytic lesions or chemical stimulation of the LHb on the defensive behaviors generated in rats by the elevated T-maze. This experimental model allows the measurement, in a same rat, of two defensive behaviors, inhibitory avoidance and escape, that have been related in terms of psychopathology to generalized anxiety and panic disorders, respectively. Bilateral electrolytic lesions of the LHb (1 mA, 10 s) impaired inhibitory avoidance acquisition and facilitated escape performance. On the other hand, chemical stimulation of the LHb by bilateral microinjection of kainic acid (30-60 pmol/0.2 mu L) had the opposite effect, i.e., facilitated inhibitory avoidance and impaired escape. The present results indicate that the LHb exerts an opposed regulatory control on generalized anxiety- and panic-related defensive responses in rats. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory aminoacid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Preadministration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN. (c) 2007 Elsevier B.V. and ECNP. All rights reserved.