908 resultados para AQUEOUS BIPHASIC CATALYSIS
Resumo:
The electrochemiluminescence (ECL) of the Ru(bgy)(3)(2-)/S2O82- system in purely aqueous solution at a carbon paste electrode can be clearly seen with the naked eye for Ru(bpy)(3)(2+) concentrations higher than 1 mmol L-1. The log-log plot of the emmitted light intensity vs. Ru(bpy)(3)(2+) concentration is linear over the region 10(-3)-10(-7) mol L-1 with a correlation coefficient of 0.997. The ECL intensity increases linearly with the S2O82- concentration from 10(-6) mol L-1 up to 0.3 mmol L-1 and drops off sharply at concentrations higher than 1 mmol L-1. In addition, a weak ECL signal was obtained when the potential was biased more negative than -0.6 V even in the absence of S2O82-.
Resumo:
In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases. and thus affect the partition of lysozyme. The relationship between partition coefficients of lysozyme and pH differences between two phases was discussed.
Resumo:
Four phenothiazines, promethazine, dioxypromethazine, chlorpromazine, and trifluoperazine have been separated by capillary electrophoresis using N, N, -dimethylformamide (DMF) as separation medium with UV absorbance detection. High voltage and concentrated buffer were used with small current and low electroosmosis. Good resolution and high column efficiency were obtained. Separation selectivity in DMI; was different from that in water because of the different solvation interactions. The influence of buffer composition on separation selectivities and electroosmosis were also studied.
Resumo:
The effect of potassium thiocyanate on the partitioning of lysozyme and BSA in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system has been investigated. As a result of the addition of potassium thiocyanate to the PEG/ammonium sulfate system, the PEG/mixed salts aqueous two-phase system was formed. It was found that the potassium thiocyanate could alter the pH difference between the two phases, and, thus, influence the partition coefficients of the differently charged proteins. The relationship between partition coefficient of the proteins and pH difference between two phases has been discussed. It was proposed that the pH difference between two phases could be employed as the measurement of electrostatic driving force for the partitioning of charged proteins in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system.
Resumo:
Polyaniline (PAn) was doped with phosphonic acid containing hydrophilic tails. The solubility of the doped PAn in water was controlled by changing the length of hydrophilic chain in the dopant. When poly(ethylene glycol) monomethyl ether (PEGME) with molecular weight M-w = 550 was used as the hydrophilic chain of the dopant, the doped PAn was entirely soluble in water. The film cast from aqueous solution showed good electrochemical redox reversibility, Aqueous solution blending of PAn with poly(ethylene glycol) (PEG, M-w = 20 000) and poly(N-vinyl pyrrolidone) (PVP, M-w = 360 000) was achieved. Percolation threshold of the composite film was lower than 3 wt.%. Electrical conductivity of the composite film was in the range of 10(-1)-10(-5) S cm(-1), depending on molecular weight of the acid and the content of PAn in the composite. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Electrocatalytic mechanism for the electrochemical oxidation of formaldehyde (HCHO) on the highly dispersed Au microparticles electrodeposited on the surface of the glass carbon (GC) electrode in the alkaline Na2CO3/NaHCO3 solution and the surface characteristics of the Au microparticle-modified glass carbon (Au/GC) electrode were studied with in situ FTIR spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the final products of HCHO oxidation is HCOO- at the Au/GC electrode and CO2 at the bulk Au electrode. The difference may be ascribed to the different surface characteristics between the Au/GC electrode and the bulk Au electrode. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Separations of phenothiazines, promethazine(PZ), dioxypromethazine (OZ), chlorpromazine(CZ), trifluoperazine(TfZ) and thioridazine(TZ) by capillary electrophoresis in water and FA media were carried out and compared. Thus different selectivity and resolution were observed as media varying from water to FA. Migration order was PZ, OZ, CZ and TZ in water but (TZ+PZ), CZ and OZ in FA, when the same buffer, 25 mmol/L Tris and 25 mmol/L citric acid, was used. It also has been observed that pH has great effect on selectivity both in water and FA and a possible explanation was given. Separation efficiency was higher in FA media than in water because of the permission of high voltage applied. For all separations in FA 30 kV was applied, and when 25 mmol/L Tris was used as buffer, current was only 20 mu A and complete separation of TZ, CZ, PZ and OZ was achieved with effencicy higher than 3.5 x 10(5) theoretical plates for all analytes. The high performance of capillary electrophoresis in FA suggests that FA is an excellent media separation.
Resumo:
In order to develop photosensitive polyimides (PSPIs) imaged in alkaline aqueous solution, a photosensitive diamine and relevant polymer containing conjugated double bonds in the main chain have been synthesized. The photosensitive characteristics and thermal stability of the polymers were investigated. These polymers possess good thermal stability and sensitivity to UV irradiation, and could be used to form a PSPI resist using alkaline aqueous solution as developer. (C) 1999 Society of Chemical Industry.
Resumo:
The cleavage and formation of the di sulfide bond of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) were examined in an aqueous solution of pH value from 0 to 14 with and without polyaniline (PAn), The redox reaction of DMcT was accelerated by PAn in acidic condition. The cell using this anodic material was set-up and characterized in aqueous electrolyte.
Resumo:
The synchronous fluorescence spectra of hemoglobin solutions are reported for the first rime. The main fluorescence peaks observed in the spectra are assigned. The effect of the concentration of hemoglobin solution on the spectra is studied. Characteristic fluorescence peaks due to the dimer and tetramer of hemoglobin molecules are recognized. (C) 1998 Academic Press.
Resumo:
Ring-opening polymerization of epsilon-caprolactone (CL) catalyzed by lanthanocenes, O(C2H4C5H3CH3)(2)YCl (Cat-YCl) and Me2Si[(CH3)(3)SiC5R3](2)NdCl (Cat-NdCl) has been carried out for the first time. It has been found that both yttrocene and neodymocene are very efficient to catalyze the polymerization of CL, giving high molecular weight poly(epsilon-caprolactone) (PCL). The effects of [cat]/[epsilon-CL] molar ratio, polymerization temperature and time, as well as solvents were investigated and polymerization temperature is found to be the most important factor affecting the polymerization. The bulk polymerization gives higher molecular weight PCL and higher conversion than that in solution polymerization. NaBPh4 was found to promote the polymerization of epsilon-caprolactone, and thus to increase both the polymerization conversion and MW of poly(epsilon-caprolactone).
Resumo:
Polyaniline (PAn) with different molecular weight was prepared by adding organic solvents such as acetone, ethanol or THF into the polymerization mixture. Open-circuit potential measurements showed that the polymerization rate was lowered by the addition of the organic solvent Spectral studies showed that PAn intermediate before the oxidant was consumed was pernigraniline and it was reduced to emeraldine base rapidly by aniline in the termination period. A mechanism of chain propagation was proposed. Chain propagation and autoacceleration period were almost independent of addition of pernigraniline, and the autoacceleration of aniline polymerization is due to more rapid initiation rate. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Hydrotalcite-like compounds (HTLcs): CoMAlCO3-HTLcs (M=Cu2+, Ni2+, Mn2+, Cr3+, Fe3+), were synthesized by coprecipitation and characterized with XRD and IR. The catalysis of these HTLcs and their calcined products were studied in the p-cresol oxidation, and the effects of the temperature of HTLcs calcination, the ratio of Co/Cu, different promoters, reaction temperatures and reaction times on reaction activities were investigated. It has been found that calcined HTLcs have higher activity than uncalcined samples and mechanical mixed oxides in this reaction. The best yield was obtained from the CoCuAlCO3-HTLc (Co/Cu/Al=3:1:1) calcined at 450 degrees C. A tentative reaction mechanism was also proposed. (C) 1998 Elsevier Science B.V.
Resumo:
Hydrotalcite-like compounds (HTLcs): (CuMAlCO3)-Al-II-HTLcs, where M-II=Co2+, Ni2+, Cu2+, Zn2+ and Fe2+, were synthesized by coprecipitation and characterized with XRD and IR. The catalysis of these HTLcs was studied in the phenol hydroxylation by H2O2 in liquid phase; then the effects of the ratio of Cu/Al, reaction temperature, solvent and pH of medium were investigated. It has been found that the uncalcined HTLcs have higher activities than those of calcined samples in this reaction. The catalyst CuAlCO3-HTLcs having Cu/Al=3 efficiently oxidized phenol and gave high yields of the corresponding diphenols in appropriate reaction conditions. A tentative reaction mechanism is also proposed. (C) 1998 Elsevier Science B.V.
Resumo:
Copper-Aluminium Hydrotalcite-like compounds are synthesized by coprecipitation and characterized with XRD and IR. Catalysis of the above mentioned HTLcs are investigated in the phenol hydroxylation, good results are obtained. Meanwhile, the effects of the ratio of Cu/Al, reaction temperature, reaction medium and pH of reaction system are discussed, The reaction mechanism is also proposed.