935 resultados para AMPHIPHILIC ASSEMBLIES
Resumo:
Novel bump-surface multicompartment micelles formed by a linear amphiphilic ABC triblock copolymer via self-assembly in selective solvent were successfully observed both in simulation and experiment. The results revealed that the block A forms the most inner core, and the blocks B and C form the inner and outer layers, respectively, and the bumps were formed by block A and more likely to be born on curving surfaces. Moreover, the micelle shape could be controlled by changing the solvent selectivity of the blocks A and B. Spherical, cylindrical, and discoidal micelles with bumpy surfaces were obtained both in experiment and simulation.
Resumo:
The effect of the hydrophobic properties of blocks B and C on the aggregate morphologies formed by ABC linear triblock copolymers in selective solvent was studied through the self-consistent field theory. Five typical micelles, such as core-shell-corona, hamburger-like, segmented-wormlike, were obtained by changing the hydrophobic properties of blocks B and C. The simulation results indicate that the shape and size of micelle are basically controlled by the hydrophobic degree of the middle block B, whereas the type of micelle is mainly determined by the hydrophobic degree of the end block C.
Resumo:
A ternary supramolecular complex of [Ni(bipy)(2)(H2O)](4)(C8AS)center dot 17.6(H2O) (bipy=4,4'-dimethyl-2,2'-bipyridine and C8AS = p-sulfonatocalix[8]arene) has been synthesized by a hydrothermal method and characterized by FT-IR spectroscopy, TG-DTA analysis and single crystal X-ray diffraction. In the structure. the water-soluble p-sulfonatocalix[8]arene molecule adopts a double partial cone conformation and is coordinated by four nickel atoms each of which is bonded by two 4,4'-dimethyl-2,2'-bipyridine molecules and one water molecule at the same time. The tetranuclear Subunits are stacked into an extended 3D structure with 1D water-filled channels via hydrogen bonds and C-H center dot center dot center dot pi interactions.
Resumo:
Preparation of monodispersed platinum nanoparticles with average size 2.0 nm stabilized by amino-terminated ionic liquid was demonstrated. The resulting platinum nanoparticles (Pt-IL) retained long-term stability without special protection. The Pt-IL nanoparticles exhibited high electrocatalytic activity toward reduction of oxygen and oxidation of methanol. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirmed that the Pt-IL films could catalyze an almost four-electron reduction of dioxygen to water.
Resumo:
Self-assembling of synthesized novel biodegradable hyperbranched amphiphilic poly(ethylene glycol)-polyethylenimine-poly(epsilon-benzyloxycarbonyl-L-lysine) (PEG-PEI-PLys(Z)) in aqueous media is studied. In aqueous media. PLys(Z) is the hydrophobic segment, with PEG and PEI as the hydrophilic segments. It will self-assemble into spherical shape when the selected solvent water is dropped into the common solvent tetrahydrofuran (THF). And when PEG-PEI-PLYS in common solvent is dropped into mixed solvent water and THF, rings will come into King. The spherical and rings are observed by environmental scanning electron microscopy (ESEM) and transmission electron microscopy ITEM). It shows that the size of the sphere is about 100 nm, and the diameter of ring distributes from 400 nm to 10 mu m and bigger with the time roll around.
Resumo:
Lanthanum phosphate (LaPO4) nanostructures with different morphologies were prepared by a facile solution-precipitation process. The effect of different reaction conditions on the morphology of nanostructures was studied. When the molar ratio of La3+:H3PO4 was around 1 : 2, 1 : 20, 1 : 100, and 1 : 200, four different morphologies, such as near-spherical, snowflake-like, star-shaped, lens-like nanostructures and short nanorods, were obtained, respectively. Meanwhile, similar shapes developed when the molar ratio of H3PO4 to ionic surfactants, such as SDS and CTAB, was varied. In addition, Eu3+ doped and Ce3+/Tb3+ co-doped LaPO4 nanostructures showed morphology evolution similar to undoped LaPO4 nanostructures. The optical properties of these doped LaPO4 were also characterized.
Resumo:
A biodegradable amphiphilic block copolymer, PEG-b-P(LA-co-MAC), was used to prepare spherical micelles consisting of a hydrophobic P(LA-co-MAC) core and a hydrophilic PEG shell. To improve their stability, the micelles were crosslinked by radical polymerization of the double bonds in the hydrophobic blocks. The crosslinked micelles had similar sizes and a narrow size distribution compared to their uncrosslinked precursor. The improved stability of the crosslinked micelles was confirmed by measurements of the CMC and a thermodynamic investigation. These micelles can internalize into Hela cells in vitro as demonstrated by inverted fluorescence microscopy and CLSM. These stabilized nanoscale micelles have potential use in biomedical applications such as drug delivery and disease diagnosis.
Resumo:
An artificial oxygen carrier is constructed by conjugating hemoglobin molecules to biodegradable micelles. Firstly a series of triblock copolymers (PEG-PMPC-PLA) in which the middle block contains pendant propargyl groups were synthesized and characterized. After the amphiphilic copolymer was self-assembled into core-shell micelles in aqueous solution, azidized hemoglobin molecules protected by carbon monoxide (CO) were conjugated to the micelles via click reaction between the propargyl and azido groups. The conjugation causes an increase of the micelle's mean diameter. Maximum conjugation ratio is 250 wt% in the hemoglobin-conjugated micelles (HCMs). Oxygen-binding ability of the HCMs was demonstrated by converting the CO-binding state of the HCMs into O-2-binding state.
Resumo:
In this paper, we have explored a simple and new strategy to obtain quasimonodisperse Au/Pt hybrid nanoparticles (NPS) with urchinlike morphology and controlled size and Pt shell thickness. Through changing the molar ratios of Au to Pt, the Pt shell thickness of urchinlike Au/Pt hybrid NPs could be easily controlled; through changing the size of Au NPs (the size was easily controlled from similar to 3 to similar to 70 nm via simple heating of HAuCl4-citrate aqueous solution), the size of urchinlike Au/Pt hybrid NPs could be facilely dominated. It should be noted that heating the solution (100 degrees C) was very necessary for obtaining three-dimensional (3D) urchinlike nanostructures while H2PtCl6 was added to gold NPs aqueous solution in the presence of reductant (ascorbic acid). The electrocatalytic oxygen reduction reaction (ORR, a reaction greatly pursued by scientists in view of its important application in fuel cells) and the electron-transfer reaction between hexacyanoferrate(III) ions and thiosulfate ions of urchinlike Au/Pt hybrid NPs were investigated. It is found that the as-prepared urchinlike Au/Pt hybrid NPs exhibited higher catalytic activities than that of similar to Pt NPs with similar size.
Resumo:
Monodisperse, submicrometer-scale platinum (Pt) colloidal spheres were prepared through a simple direct chemical reduction of p-phenylenediamine (PPD)-chloroplatinic acid (H2PtCl6) coordination polymer colloids. It was found that the prepared Pt colloids had the similar size and morphology with their coordination polymer precursors, and the prepared Pt colloids with rough surfaces were three-dimensional (3D) structured assemblies of high-density small Pt nanoparticles. The electrochemical experiments confirmed that the prepared Pt colloids possessed a high electrocatalytic activity towards mainly four-electron reduction of dioxygen to water, making the prepared Pt colloids potential candidates for the efficient cathode material in fuel cells.
Resumo:
Paclitaxel-loaded poly(ethylene glycol)-b-poly(L-lactide (LA)) (PEG-PLA) micelles were prepared by two methods. One is physical encapsulation of paclitaxel in micelles composed of a PEG-PLA block copolymer and the other is based on a PEG-PLA-paclitaxel conjugate, abbreviated as "conjugate micelles" Their physicochemical characteristics, e.g. critical micelle concentration (CMC), morphology, and micelle size distribution were then evaluated by means of fluorescence spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The results show that the CMC of PEG-PLA-paclitaxel and PEG-PLA are 6.31 x 10(4) and 1.78 x 10(-3) g L-1, respectively. Both micelles assume a spherical shape with comparable diameters and have unimodal size distribution. Moreover, in vitro drug delivery behavior was studied by high performance liquid chromatography (HPLC). The antitumor activity of the paclitaxel-loaded micelles against human liver cancer H7402 cells was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method.
Resumo:
We present a simple, generally applicable procedure for obtaining diameter-controlled SiO2@ carbon nanotubes (CNTs) coaxial nanocables. These coaxial nanocables with high solubility in polar solvents, have been used as functional templates for assembling CNTs/Au nanorods heterogeneous nanostructures to form multifunctional assembly system. These hybrid nanostructures may find applications in nanoelectronics, photonics, and nanodevices.
Resumo:
An approach was reported to synthesize silica hybridized ruthenium bipyridyl complex through amidation reaction by covalent attachment of bis(bipyridyl)-4,4'-dicarboxy-2,2'-bipyridyl-ruthenium to (3-aminopropyl)-triethoxysilane. The hybrid complex then was gelatinized through acid catalytic hydrolysis method and a sol-gel modified indium, tin oxide electrode was prepared via spin coating technique. As prepared indium tin oxide electrode possesses good stability therein with excellent electrochemiluminescence behavior.
Resumo:
Functionalized multiwalled carbon nanotubes (MWNTs) were selected as cross-linkers to construct three-dimensional (3D) porous nanoparticle/MWNT hybrid nanostructures by "bottom-up'' self-assembly. The resultant 3D hybrid nanostructure was different from that of metal nanoparticle multilayer assemblies prepared by traditional routes using small molecules or polymers as cross-linkers. The rigidity of the MWNTs resulted in only partial coverage of the nanoparticle surfaces between the linkers during the growth of multilayer film, providing more accessible surfaces to allow target molecules to adsorb on to and react with. HRP was used as a simple model to study the porosity of this assembly.
Resumo:
Adsorption of polyethyleneimine (PEI)-metal ion complexes onto the surfaces of carbon nanotubes (CNTs) and subsequent reduction of the metal ion leads to the fabrication of one-dimensional CNT/metal nanoparticle (CNT/M NP) heterogeneous nanostructures. Alternating adsorption of PEI-metal ion complexes and CNTs on substrates results in the formation of multilayered CNT films. After exposing the films to NaBH4, three-dimensional CNT composite films embedded with metal nanoparticles (NPs) are obtained. UV-visible spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy are used to characterize the film assembly. The resulting (CNT/M NP)(n) films inherit the properties from both the metal NPs and CNTs that exhibit unique performance in surface-enhanced Raman scattering (SERS) and electrocatalytic activities to the reduction of O-2; as a result, they are more attractive compared to (CNT/polyelectrolyte)(n) and (NP/polyelectrolyte)(n) films because of their multifunctionality.