5 resultados para AMPHIPHILIC ASSEMBLIES
em CaltechTHESIS
Resumo:
Granular crystals are compact periodic assemblies of elastic particles in Hertzian contact whose dynamic response can be tuned from strongly nonlinear to linear by the addition of a static precompression force. This unique feature allows for a wide range of studies that include the investigation of new fundamental nonlinear phenomena in discrete systems such as solitary waves, shock waves, discrete breathers and other defect modes. In the absence of precompression, a particularly interesting property of these systems is their ability to support the formation and propagation of spatially localized soliton-like waves with highly tunable properties. The wealth of parameters one can modify (particle size, geometry and material properties, periodicity of the crystal, presence of a static force, type of excitation, etc.) makes them ideal candidates for the design of new materials for practical applications. This thesis describes several ways to optimally control and tailor the propagation of stress waves in granular crystals through the use of heterogeneities (interstitial defect particles and material heterogeneities) in otherwise perfectly ordered systems. We focus on uncompressed two-dimensional granular crystals with interstitial spherical intruders and composite hexagonal packings and study their dynamic response using a combination of experimental, numerical and analytical techniques. We first investigate the interaction of defect particles with a solitary wave and utilize this fundamental knowledge in the optimal design of novel composite wave guides, shock or vibration absorbers obtained using gradient-based optimization methods.
Resumo:
Metal complexes that utilize the 9,10-phenanthrene quinone diimine (phi) moiety bind to DNA through the major groove. These metallointercalators can recognize DNA sites and perform reactions on DNA as a substrate. The site-specific metallointercalator Λ-1-Rh(MGP)_2phi^(5+) competitively disrupts the major groove binding of a transcription factor, yAP-1, from an oligonucleotide that contains a common binding site. The demonstration that metal complexes can prevent transcription factor binding to DNA site-specifically is an important step in using metallointercalators as therapeutics.
The distinctive photochemistry of metallointercalators can also be applied to promote long range charge transport in DNA. Experiments using duplexes with regions 4 to 10 nucleotides long containing strictly adenine and thymine sequences of varying order showed that radical migration is more dependent on the sequence of bases, and less dependent on the distance between the guanine doublets. This result suggests that mechanistic proposals of long range charge transport must involve all the bases.
RNA/DNA hybrids show charge migration to guanines from a remote site, thus demonstrating that nucleic acid stacking other than B-form can serve as a radical bridge. Double crossover DNA assemblies also provide a medium for charge transport at distances up to 100 Å from the site of radical introduction by a tethered metal complex. This radical migration was found to be robust to mismatches, and limited to individual, electronically distinct base stacks. In single DNA crossover assemblies, which have considerably greater flexibility, charge migration proceeds to both base stacks due to conformational isomers not present in the rigid and tightly annealed double crossovers.
Finally, a rapid, efficient, gel-based technique was developed to investigate thymine dimer repair. Two oligonucleotides, one radioactively labeled, are photoligated via the bases of a thymine-thymine interface; reversal of this ligation is easily visualized by gel electrophoresis. This assay was used to show that the repair of thymine dimers from a distance through DNA charge transport can be accomplished with different photooxidants.
Thus, nucleic acids that support long range charge transport have been shown to include A-track DNA, RNA/DNA hybrids, and single and double crossovers, and a method for thymine dimer repair detection using charge transport was developed. These observations underscore and extend the remarkable finding that DNA can serve a medium for charge transport via the heteroaromatic base stack.
Resumo:
Algorithmic DNA tiles systems are fascinating. From a theoretical perspective, they can result in simple systems that assemble themselves into beautiful, complex structures through fundamental interactions and logical rules. As an experimental technique, they provide a promising method for programmably assembling complex, precise crystals that can grow to considerable size while retaining nanoscale resolution. In the journey from theoretical abstractions to experimental demonstrations, however, lie numerous challenges and complications.
In this thesis, to examine these challenges, we consider the physical principles behind DNA tile self-assembly. We survey recent progress in experimental algorithmic self-assembly, and explain the simple physical models behind this progress. Using direct observation of individual tile attachments and detachments with an atomic force microscope, we test some of the fundamental assumptions of the widely-used kinetic Tile Assembly Model, obtaining results that fit the model to within error. We then depart from the simplest form of that model, examining the effects of DNA sticky end sequence energetics on tile system behavior. We develop theoretical models, sequence assignment algorithms, and a software package, StickyDesign, for sticky end sequence design.
As a demonstration of a specific tile system, we design a binary counting ribbon that can accurately count from a programmable starting value and stop growing after overflowing, resulting in a single system that can construct ribbons of precise and programmable length. In the process of designing the system, we explain numerous considerations that provide insight into more general tile system design, particularly with regards to tile concentrations, facet nucleation, the construction of finite assemblies, and design beyond the abstract Tile Assembly Model.
Finally, we present our crystals that count: experimental results with our binary counting system that represent a significant improvement in the accuracy of experimental algorithmic self-assembly, including crystals that count perfectly with 5 bits from 0 to 31. We show some preliminary experimental results on the construction of our capping system to stop growth after counters overflow, and offer some speculation on potential future directions of the field.
Resumo:
Detailed pulsed neutron measurements have been performed in graphite assemblies ranging in size from 30.48 cm x 38.10 cm x 38.10 cm to 91.44 cm x 66.67 cm x 66.67 cm. Results of the measurement have been compared to a modeled theoretical computation.
In the first set of experiments, we measured the effective decay constant of the neutron population in ten graphite stacks as a function of time after the source burst. We found the decay to be non-exponential in the six smallest assemblies, while in three larger assemblies the decay was exponential over a significant portion of the total measuring interval. The decay in the largest stack was exponential over the entire ten millisecond measuring interval. The non-exponential decay mode occurred when the effective decay constant exceeded 1600 sec^( -1).
In a second set of experiments, we measured the spatial dependence of the neutron population in four graphite stacks as a function of time after the source pulse. By doing an harmonic analysis of the spatial shape of the neutron distribution, we were able to compute the effective decay constants of the first two spatial modes. In addition, we were able to compute the time dependent effective wave number of neutron distribution in the stacks.
Finally, we used a Laplace transform technique and a simple modeled scattering kernel to solve a diffusion equation for the time and energy dependence of the neutron distribution in the graphite stacks. Comparison of these theoretical results with the results of the first set of experiments indicated that more exact theoretical analysis would be required to adequately describe the experiments.
The implications of our experimental results for the theory of pulsed neutron experiments in polycrystalline media are discussed in the last chapter.
Resumo:
This dissertation is concerned with the development of a new discrete element method (DEM) based on Non-Uniform Rational Basis Splines (NURBS). With NURBS, the new DEM is able to capture sphericity and angularity, the two particle morphological measures used in characterizing real grain geometries. By taking advantage of the parametric nature of NURBS, the Lipschitzian dividing rectangle (DIRECT) global optimization procedure is employed as a solution procedure to the closest-point projection problem, which enables the contact treatment of non-convex particles. A contact dynamics (CD) approach to the NURBS-based discrete method is also formulated. By combining particle shape flexibility, properties of implicit time-integration, and non-penetrating constraints, we target applications in which the classical DEM either performs poorly or simply fails, i.e., in granular systems composed of rigid or highly stiff angular particles and subjected to quasistatic or dynamic flow conditions. The CD implementation is made simple by adopting a variational framework, which enables the resulting discrete problem to be readily solved using off-the-shelf mathematical programming solvers. The capabilities of the NURBS-based DEM are demonstrated through 2D numerical examples that highlight the effects of particle morphology on the macroscopic response of granular assemblies under quasistatic and dynamic flow conditions, and a 3D characterization of material response in the shear band of a real triaxial specimen.