981 resultados para 312.274


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research aimed to develop and evaluate pre- and postharvest management strategies to reduce stem end rot (SER) incidence and extend saleable life of 'Carabao' mango fruits in Southern Philippines. Preharvest management focused on the development and improvement of fungicide spray program, while postharvest management aimed to develop alternative interventions aside from hot water treatment (HWT). Field evaluation of systemic fungicides, namely azoxystrobin ( Amistar 25SC), tebuconazole ( Folicur 25WP), carbendazim ( Goldazim 500SC), difenoconazole ( Score 250SC) and azoxystrobin+difenoconazole ( Amistar Top), reduced blossom blight severity and improved fruit setting and retention, resulting in higher fruit yield but failed to sufficiently suppress SER incidence. Based on these findings, an improved fungicide spray program was developed taking into account the infection process of SER pathogens and fungicide resistance. Timely application of protectant (mancozeb) and systemic fungicides (azoxystrobin, carbendazim and difenoconazole) during the most critical stages of mango flower and fruit development ensured higher harvestable fruit yield and minimally lowered SER incidence. Control of SER was also achieved by employing postharvest treatment such as HWT (52-55°C for 10 min), which significantly prolonged the saleable life of mango fruits. However, extended hot water treatment (EHWT; 46°C pulp temperature for 15 min), rapid heat treatment (RHT; 59°C for 30-60 sec), fungicide dip and promising biological control agents failed to satisfactorily reduce SER and prolong saleable life. In contrast, the integration of the improved spray program as preharvest management practice, and postharvest treatments such as HWT and fungicide dips (azoxystrobin, 150-175 ppm; carbendazim, 312.5 ppm; and tebuconazole, 125-156 ppm), significantly reduced disease and extended marketable life for utmost 8 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Equine multinodular pulmonary fibrosis (EMPF) is a recently described form of interstitial pneumonia associated with the presence of equine herpesvirus type 5 (EHV-5). Since 2007, several case reports from America, Europe and the United Kingdom have further characterised the clinical presentation and laboratory findings of this disease. Case reports Three Thoroughbred broodmares were diagnosed with EMPF. Diagnosis was based on lung histopathology and positive identification of EHV-5 using PCR DNA amplification. There was multiple organ involvement in all three cases, including identification of EHV-5 in hepatic tissue in one case. Two of the three horses died. Treatment with acyclovir was unsuccessful in one horse and one horse survived without antiviral or corticosteroid treatment. Conclusion This case series is, to the authors' knowledge, the first report of EMPF in Australia and adds to the clinical description of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phylogenetic group D extraintestinal pathogenic Escherichia coli (ExPEC), including O15:K52:H1 and clonal group A, have spread globally and become fluoroquinolone-resistant. Here we investigated the role of canine feces as a reservoir of these (and other) human-associated ExPEC and their potential as canine pathogens. We characterized and compared fluoroquinolone-resistant E. coli isolates originally identified as phylogenetic group D from either the feces of hospitalized dogs (n = 67; 14 dogs) or extraintestinal infections (n = 53; 33 dogs). Isolates underwent phylogenetic grouping, random amplified polymorphic DNA (RAPD) analysis, virulence genotyping, resistance genotyping, human-associated ExPEC O-typing, and multi-locus sequence typing. Five of seven human-associated sequence types (STs) exhibited ExPEC-associated O-types, and appeared in separate RAPD clusters. The largest subgroup (16 fecal, 26 clinical isolates) were ST354 (phylogroup F) isolates. ST420 (phylogroup B2); O1-ST38, O15:K52:H1-ST393, and O15:K1-ST130 (phylogroup D); and O7-ST457, and O1-ST648 (phylogroup F) were also identified. Three ST-specific RAPD sub-clusters (ST354, ST393, and ST457) contained closely related isolates from both fecal or clinical sources. Genes encoding CTX-M and AmpC β-lactamases were identified in isolates from five STs. Major human-associated fluoroquinolone-resistant ± extended-spectrum cephalosporin-resistant ExPEC of public health importance may be carried in dog feces and cause extraintestinal infections in some dogs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(I): Mr=274"39, orthorhombic, Pbca, a = 7.443 (1), b= 32.691 (3), c= 11.828 (2)A, V= 2877.98A 3, Z=8, Din= 1.216 (flotation in KI), D x = 1.266 g cm -3, /~(Cu Ka, 2 = 1.5418 A) = 17.55 cm -1, F(000) = li52.0, T= 293 K, R = 6.8%, 1378 significant reflections. (II): M r = 248.35, orthorhombic, P212~21, a = 5.873 (3), b = 13.677 (3), c = 15-668 (5) A, V = 1260.14 A 3, Z = 4, D,n = 1.297 (flotation in KI), Dx= 1.308 g cm -a, /t(CuKa, 2=1.5418 A) = 19.55 cm -~, F(000) = 520.0, T= 293 K, R = 6.9%, 751 significant reflections. Crystals of (I) and (II) undergo photo-oxidation in the crystallinestate. In (I) the dihedral angle between the phenyl rings of the biphenyl moiety is 46 (1) °. The C=S bond length is 1.611(5) A in (I) and 1.630 (9)/~ in (II). The correlation between molecular packing and reactivity is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA polymerase has been purified approximately 2000-fold from Mycobacterium tuberculosis H37Rv. The purified preparation was homogeneous by electrophoretic criteria and has a molecular weight of 135 000. The purified enzyme resembles Escherichia coli polymerase I in its properties, being insensitive to sulfhydryl drugs and possessing 5′,3′-exonuclease activity in addition to polymerase and 3′,5′-exonuclease activities. However, it differs from the latter in its sensitivity to higher salt concentration and DNA intercalating agents such as 8-aminoquinoline. The polymerase exhibited maximal activity between 37–42°C and pH 8.8–9.5. The polymerase was stable for several months below 0°C. However, the 5′,3′-exonuclease activity was more labile. The effects of different metal ions, polyamines and drugs on the polymerase activity are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the resistance of bacteria to conventional antibiotics has become an increasing problem, new antimicrobial drugs are urgently needed. One possible source of new antibacterial agents is a group of cationic antimicrobial peptides (CAMPs) produced by practically all living organisms. These peptides are typically small, amphipathic and positively charged and contain well defined a-helical or b-sheet secondary structures. The main antibacterial action mechanism of CAMPs is considered to be disruption of the cell membrane, but other targets of CAMPs also exist. Some bacterial species have evolved defence mechanisms against the harmful effects of CAMPs. One of the most effective defence mechanisms is reduction of the net negative charge of bacterial cell surfaces. Global analysis of gene expression of two Gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, was used to further study the stress responses induced by different types of CAMPs. B. subtilis cells were treated with sublethal concentrations of a-helical peptide LL-37, b-sheet peptide protegrin 1 or synthetic analogue poly-L-lysine, and the changes in gene expression were studied using DNA macroarrays. In the case of S. aureus, three different a-helical peptides were selected for the transcriptome analyses: temporin L, ovispirin-1 and dermaseptin K4-S4(1-16). Transcriptional changes caused by peptide stress were examined using oligo DNA microarrays. The transcriptome analysis revealed two main cell signalling mechanisms mediating CAMP stress responses in Gram-positive bacteria: extracytoplasmic function (ECF)sigma factors and two-component systems (TCSs). In B. subtilis, ECF sigma factors sigW and sigM as well as TCS LiaRS responded to the cell membrane disruption caused by CAMPs. In S. aureus, CAMPs caused a similar stress response to antibiotics interfering in cell wall synthesis, and TCS VraSR was strongly activated. All of these transcriptional regulators are known to respond to several compounds other than CAMPs interfering with cell envelope integrity, suggesting that they sense cell envelope stress in general. Among the most strongly induced genes were yxdLM (in B. subtilis) and vraDE (in S. aureus) encoding homologous ABC transporters. Transcription of yxdLM and vraDE operons is controlled by TCSs YxdJK and ApsRS, respectively. These TCSs seemed to be responsible for the direct recognition of CAMPs. The yxdLM operon was specifically induced by LL-37, but its role in CAMP resistance remained unclear. VraDE was proven to be a bacitracin transporter. We also showed that the net positive charge of the cell wall affects the signalrecognition of different TCSs responding to cell envelope stress. Inactivation of the Dlt system responsible for the D-alanylation of teichoic acids had a strong and differential effect on the activity of the studied TCSs, depending on their functional role in cells and the stimuli they sense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The drift mobility of photoexcited holes in single-crystal beta-AgI has been measured between 260 and 312 °K. In this range the drift mobility µd increased with temperature due to trap-limited behavior. At 300 °K µd=12 cm2/V sec, the concentration and energy of the dominant traps being given by Nt=3×109 to 5×109/cm3 and Et=0.52 to 0.50 eV, respectively. Electron drift mobilities could not be determined due to low electron lifetimes. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Medication safety is a pressing concern for residential aged care facilities (RACFs). Retrospective studies in RACF settings identify inadequate communication between RACFs, doctors, hospitals and community pharmacies as the major cause of medication errors. Existing literature offers limited insight about the gaps in the existing information exchange process that may lead to medication errors. The aim of this research was to explicate the cognitive distribution that underlies RACF medication ordering and delivery to identify gaps in medication-related information exchange which lead to medication errors in RACFs. Methods The study was undertaken in three RACFs in Sydney, Australia. Data were generated through ethnographic field work over a period of five months (May–September 2011). Triangulated analysis of data primarily focused on examining the transformation and exchange of information between different media across the process. Results The findings of this study highlight the extensive scope and intense nature of information exchange in RACF medication ordering and delivery. Rather than attributing error to individual care providers, the explication of distributed cognition processes enabled the identification of gaps in three information exchange dimensions which potentially contribute to the occurrence of medication errors namely: (1) design of medication charts which complicates order processing and record keeping (2) lack of coordination mechanisms between participants which results in misalignment of local practices (3) reliance on restricted communication bandwidth channels mainly telephone and fax which complicates the information processing requirements. The study demonstrates how the identification of these gaps enhances understanding of medication errors in RACFs. Conclusions Application of the theoretical lens of distributed cognition can assist in enhancing our understanding of medication errors in RACFs through identification of gaps in information exchange. Understanding the dynamics of the cognitive process can inform the design of interventions to manage errors and improve residents’ safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial surface-associated proteins are important in communication with the environment and bacteria-host interactions. In this thesis work, surface molecules of Lactobacillus crispatus important in host interaction were studied. The L. crispatus strains of the study were known from previous studies to be efficient in adhesion to intestinal tract and ECM. L. crispatus JCM 5810 possess an adhesive surface layer (S-layer) protein, whose functions and domain structure was characterized. We cloned two S-layer protein genes (cbsA; collagen-binding S-layer protein A and silent cbsB) and identified the protein region in CbsA important for adhesion to host tissues, for polymerization into a periodic layer as well as for attachment to the bacterial cell surface. The analysis was done by extensive mutation analysis and by testing His6-tagged fusion proteins from recombinant Escherichia coli as well as by expressing truncated CbsA peptides on the surface of Lactobacillus casei. The N-terminal region (31-274) of CbsA showed efficient and specific binding to collagens, laminin and extracellular matrix on tissue sections of chicken intestine. The N-terminal region also contained the information for formation of periodic S-layer polymer. This region is bordered at both ends by a conserved short region rich in valines, whose substitution to leucines drastically affected the periodic polymer structure. The mutated CbsA proteins that failed to form a periodic polymer, did not bind collagens, which indicates that the polymerized structure of CbsA is needed for collagen-binding ability. The C-terminal region, which is highly identical in S-layer proteins of L. crispatus, Lactobacillus acidophilus and Lactobacillus helveticus, was shown to anchor the protein to the bacterial cell wall. The C-terminal CbsA peptide specifically bound to bacterial teichoic acid and lipoteichoic acids. In conclusion, the N-terminal domain of the S-layer protein of L. crispatus is important for polymerization and adhesion to host tissues, whereas the C-terminal domain anchors the protein to bacterial cell-wall teichoic acids. Lactobacilli are fermentative organisms that effectively lower the surrounding pH. While this study was in progress, plasminogen-binding proteins enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified in the extracellular proteome of L. crispatus ST1. In this work, the cell-wall association of enolase and GAPDH were shown to rely on pH-reversible binding to the cell-wall lipoteichoic acids. Enolase from L. crispatus was functionally compared with enolase from L. johnsonii as well as from pathogenic streptococci (Streptococcus pneumoniae, Streptococcus pyogenes) and Staphylococcus aureus. His6-enolases from commensal lactobacilli bound human plasminogen and enhanced its activation by human plasminogen activators similarly to, or even better than, the enolases from pathogens. Similarly, the His6-enolases from lactobacilli exhibited adhesive characteristics previously assigned to pathogens. The results call for more detailed analyses of the role of the host plasminogen system in bacterial pathogenesis and commensalism as well of the biological role and potential health risk of the extracellular proteome in lactobacilli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IgA nephropathy (IgAN) is the most common primary glomerulonephritis. In one third of the patients the disease progresses, and they eventually need renal replacement therapy. IgAN is in most cases a slowly progressing disease, and the prediction of progression has been difficult, and the results of studies have been conflicting. Henoch-Schönlein nephritis (HSN) is rare in adults, and prediction of the outcome is even more difficult than in IgAN. This study was conducted to evaluate the clinical and histopathological features and predictors of the outcome of IgAN and HSN diagnosed in one centre (313 IgAN patients and 38 HSN patients), and especially in patients with normal renal function at the time of renal biopsy. The study also aimed to evaluate whether there is a difference in the progression rates in four countries (259 patients from Finland, 112 from UK, 121 from Australia and 274 from Canada), and if so, can this be explained by differences in renal biopsy policy. The third aim was to measure urinary excretions of cytokines interleukin 1ß (IL-1ß) and interleukin 1 receptor antagonist (IL-1ra) in patients with IgAN and HSN and the correlations of excretion of these substances with histopathological damage and clinical factors. A large proportion of the patients diagnosed in Helsinki as having IgAN had normal renal function (161/313 patients). Four factors, (hypertension, higher amounts of urinary erythrocytes, severe arteriolosclerosis and a higher glomerular score) which independently predicted progression (logistic regression analysis), were identified in mild disease. There was geographic variability in renal survival in patients with IgAN. When age, levels of renal function, proteinuria and blood pressure were taken into account, it showed that the variability related mostly to lead-time bias and renal biopsy indications. Amount of proteinuria more than 0.4g/24h was the only factor that was significantly related to the progression of HSN. the Hypertension and the level of renal function were found to be factors predicting outcome in patients with normal renal function at the time of diagnosis. In IgAN patients, IL-1ra excretion into urine was found to be decreased as compared with HSN patients and healthy controls. Patients with a high IL-1ra/IL-1ß ratio had milder histopathological changes in renal biopsy than patients with a low/normal IL-1ra/IL-1ß ratio. It was also found that the excretion of IL-1ß and especially IL-1ra were significantly higher in women. In conclusion, it was shown that factors associated with outcome can reliably be identified even in mild cases of IgAN. Predicting outcome in adult HSN, however, remains difficult.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyphenol oxidase (PPO) catalyzes the oxidation of o-diphenols to their respective quinones. The quinones autopolymerize to form dark pigments, an undesired effect. PPO is therefore the target for the development of antibrowning and antimelanization agents. A series of phenolic compounds experimentally evaluated for their binding affinity and inhibition constants were computationally docked to the active site of catechol oxidase. Docking studies suggested two distinct modes of binding, dividing the docked ligands into two groups. Remarkably, the first group corresponds to ligands determined to be substrates and the second group corresponds to reversible inhibitors. Analyses of the complexes provide structural explanations for correlating subtle changes in the position and nature of the substitutions on o-diphenols to their functional properties as substrates and inhibitors. Higher reaction rates and binding are reckoned by additional interactions of the substrates with key residues that line the hydrophobic cavity. The docking results suggest that inhibition of oxidation stems from an interaction between the aromatic carboxylic acid group and the apical His 109 of the four coordinates of the trigonal pyramidal coordination polyhedron of CuA. The spatial orientation of the hydroxyl in relation to the carboxylic group either allows a perfect fit in the substrate cavity, leading to inhibition, or because of a steric clash flips the molecule vertically, facilitating oxidation. This is the first study to explain, at the molecular level, the determinants Of substrate and inhibitor specificity of a catechol oxidase, thereby providing a platform for the design of selective inhibitors useful to both the food and pharmaceutical industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase (SHMT) from Bacillus stearothermophilus (bsSHMT) is a pyridoxal 5'-phosphate-dependent enzyme that catalyses the conversion of l-serine and tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. In addition, the enzyme catalyses the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids and transamination. In this article, we have examined the mechanism of the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids by SHMT. The three-dimensional structure and biochemical properties of Y51F and Y61A bsSHMTs and their complexes with substrates, especially l-allo-Thr, show that the cleavage of 3-hydroxy amino acids could proceed via Cα proton abstraction rather than hydroxyl proton removal. Both mutations result in a complete loss of tetrahydrofolate-dependent and tetrahydrofolate-independent activities. The mutation of Y51 to F strongly affects the binding of pyridoxal 5'-phosphate, possibly as a consequence of a change in the orientation of the phenyl ring in Y51F bsSHMT. The mutant enzyme could be completely reconstituted with pyridoxal 5'-phosphate. However, there was an alteration in the λmax value of the internal aldimine (396 nm), a decrease in the rate of reduction with NaCNBH3 and a loss of the intermediate in the interaction with methoxyamine (MA). The mutation of Y61 to A results in the loss of interaction with Cα and Cβ of the substrates. X-Ray structure and visible CD studies show that the mutant is capable of forming an external aldimine. However, the formation of the quinonoid intermediate is hindered. It is suggested that Y61 is involved in the abstraction of the Cα proton from 3-hydroxy amino acids. A new mechanism for the cleavage of 3-hydroxy amino acids via Cα proton abstraction by SHMT is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snow cover is very sensitive to climate change and has a large feedback effect on the climate system due to the high albedo. Snow covers almost all surfaces in Antarctica and small changes in snow properties can mean large changes in absorbed radiation. In the ongoing discussion of climatic change, the mass balance of Antarctica has received increasing focus during recent decades, since its reaction to global warming strongly influences sea-level change. The aim of the present work was to examine the spatial and temporal variations in the physical and chemical characteristics of surface snow and annual accumulation rates in western Dronning Maud Land, Antarctica. The data were collected along a 350-km-long transect from the coast to the plateau during the years 1999-2004 as a part of the Finnish Antarctic Research Programme (FINNARP). The research focused on the most recent annual accumulation in the coastal area. The results show that the distance from the sea, and the moisture source, was the most predominant factor controlling the variations in both physical (conductivity, grain size, oxygen isotope ratio and accumulation) and chemical snow properties. The sea-salt and sulphur-containing components predominated in the coastal region. The local influences of nunataks and topographic highs were also visible on snow. The variations in all measured properties were wide within single sites mostly due to redistribution by winds and sastrugi topography, which reveals the importance of the spatially representative measurements. The mean accumulations occurred on the ice shelf, in the coastal region and on the plateau: 312 ± 28, 215 ± 43 and 92 ± 25 mm w.e., respectively. Depth hoar layers were usually found under the thin ice crust and were associated with a low dielectric constant and high concentrations of nitrate. Taking into account the vast size of the Antarctic ice sheet and its geographic characteristics, it is important to extend investigation of the distribution of surface snow properties and accumulation to provide well-documented data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: We report on the outcome of the Exeter Contemporary flanged cemented all-polyethylene acetabular component with a mean follow-up of 12 years (10 to 13.9). This study reviewed 203 hips in 194 patients. 129 hips in 122 patients are still in situ; 66 hips in 64 patients were in patients who died before ten years, and eight hips (eight patients) were revised. Clinical outcome scores were available for 108 hips (104 patients) and radiographs for 103 hips (100 patients). Patients and Methods: A retrospective review was undertaken of a consecutive series of 203 routine primary cemented total hip arthroplasties (THA) in 194 patients. Results: There were no acetabular component revisions for aseptic loosening. Acetabular revision was undertaken in eight hips. In four hips revision was necessitated by periprosthetic femoral fractures, in two hips by recurrent dislocation, in one hip for infection and in one hip for unexplained ongoing pain. Oxford and Harris hip scores demonstrated significant clinical improvement (all p < 0.001). Radiolucent lines were present in 37 (36%) of the 103 acetabular components available for radiological evaluation. In 27 of these, the line was confined to zone 1. No component had migrated. Conclusion: Kaplan–Meier survivorship, with revision for aseptic loosening as the endpoint, was 100% at 12.5 years and for all causes was 97.8% (95% confidence interval 95.6 to 100) when 40 components remained at risk. The Exeter Contemporary flanged cemented acetabular component demonstrates excellent survivorship at 12.5 years. Take home message: The Exeter Contemporary flanged cemented acetabular component has excellent clinical outcomes and survivorship when used with the Exeter stem in total hip arthroplasty.