861 resultados para 010201 Approximation Theory and Asymptotic Methods
Resumo:
This article investigates a significant problem in contemporary critical theory, namely its failure to address effectively the possibility that a campaign of political violence may be a legitimate means of fighting grave injustice. Having offered a working definition of ‘political violence’, I argue that critical theory should be focused on experiences of injustice rather than on ideals of justice. I then explore the reasons as to why, save for some intriguing remarks on retrospective legitimation, Jürgen Habermas has not addressed this issue directly. While Axel Honneth's recognition theory may have greater potential here, the absence of explicit consideration of the matter by him leaves considerable work to do. I introduce five questions in the concluding section that provide a starting point in setting out an appropriately stringent, normative test for claims that support violent action against injustice.
Resumo:
The microkinetics based on density function theory (DFT) calculations is utilized to investigate the reaction mechanism of crotonaldehyde hydrogenation on Pt(111) in the free energy landscape. The dominant reaction channel of each hydrogenation product is identified. Each of them begins with the first surface hydrogenation of the carbonyl oxygen of crotonaldehyde on the surface. A new mechanism, 1,4-addition mechanism generating enols (butenol), which readily tautomerize to saturated aldehydes (butanal), is identified as a primary mechanism to yield saturated aldehydes instead of the 3,4-addition via direct hydrogenation of the ethylenic bond. The calculation results also show that the full hydrogenation product, butylalcohol, mainly stems from the deep hydrogenation of surface open-shell dihydrogenation intermediates. It is found that the apparent barriers of the dominant pathways to yield three final products are similar on P(111), which makes it difficult to achieve a high selectivity to the desired crotyl alcohol (COL).
Resumo:
Using density functional theory (DFT) and kinetic analyses, a new carboxyl mechanism for the water-gas-shift reaction (WGSR) on Au/CeO2(111) is proposed. Many elementary steps in the WGSR are studied using an Au cluster supported on CeO2(111). It is found that (i) water can readily dissociate at the interface between Au and CeO2; (ii) CO2 can be produced via two steps: adsorbed CO on the Au cluster reacts with active OH on ceria to form the carboxyl (COOH) species and then COOH reacts with OH to release CO2; and (iii) two adsorbed H atoms recombine to form molecular H-2 on the Au cluster. Our kinetic analyses show that the turnover frequency of the carboxyl mechanism is consistent with the experimental one while the rates of redox and formate mechanisms are much slower than that of carboxyl mechanism. It is suggested that the carboxyl pathway is likely to be responsible for WGSR on Au/CeO2.