562 resultados para thinning


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent changes in the dynamics of Greenland's marine terminating outlet glaciers indicate a rapid and complex response to external forcing. Despite observed ice front retreat and recent geophysical evidence for accelerated mass loss along Greenland's northwestern margin, it is unclear whether west Greenland glaciers have undergone the synchronous speed-up and subsequent slow-down as observed in southeastern glaciers earlier in the decade. To investigate changes in west Greenland outlet glacier dynamics and the potential controls behind their behavior, we derive time series of front position, surface elevation, and surface slope for 59 marine terminating outlet glaciers and surface speeds for select glaciers in west Greenland from 2000 to 2009. Using these data, we look for relationships between retreat, thinning, acceleration, and geometric parameters to determine the first-order controls on glacier behavior. Our data indicate that changes in front positions and surface elevations were asynchronous on annual time scales, though nearly all glaciers retreated and thinned over the decade. We found no direct relationship between retreat, acceleration, and external forcing applicable to the entire region. In regard to geometry, we found that, following retreat, (1) glaciers with grounded termini experienced more pronounced changes in dynamics than those with floating termini and (2) thinning rates declined more quickly for glaciers with steeper slopes. Overall, glacier geometry should influence outlet glacier dynamics via stress redistribution following perturbations at the front, but our data indicate that the relative importance of geometry as a control of glacier behavior is highly variable throughout west Greenland.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract of Bazin et al. (2013): An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale had been developed based on an inverse dating method (Datice), combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousands of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2013), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120-800 ka. In this framework, new measurements of d18Oatm over Marine Isotope Stage (MIS) 11-12 on EDC and a complete d18Oatm record of the TALDICE ice cores permit us to derive additional orbital gas age constraints. The coherency of the different orbitally deduced ages (from d18Oatm, dO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology is now independent of other archives and shows only small differences, most of the time within the original uncertainty range calculated by Datice, when compared with the previous ice core reference age scale EDC3, the Dome F chronology, or using a comparison between speleothems and methane. For instance, the largest deviation between AICC2012 and EDC3 (5.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one. Abstract of Veres et al. (2013): The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 timescale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al. (2013) focuses on the interval 120-800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception, respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on d15N data employed as the Datice background scenario, the AICC2012 presents a slightly improved timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the seesaw mechanism, with maximum differences of about 600 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before. It is expected that the future contribution of both other long ice core records and other types of chronological constraints to the Datice tool will lead to further refinements in the ice core chronologies beyond the AICC2012 chronology. For the time being however, we recommend that AICC2012 be used as the preferred chronology for the Vostok, EDC, EDML and TALDICE ice core records, both over the last glacial cycle (this study), and beyond (following Bazin et al., 2013). The ages for NGRIP in AICC2012 are virtually identical to those of GICC05 for the last 60.2 ka, whereas the ages beyond are independent of those in GICC05modelext (as in the construction of AICC2012, the GICC05modelext was included only via the background scenarios and not as age markers). As such, where issues of phasing between Antarctic records included in AICC2012 and NGRIP are involved, the NGRIP ages in AICC2012 should therefore be taken to avoid introducing false offsets. However for issues involving only Greenland ice cores, there is not yet a strong basis to recommend superseding GICC05modelext as the recommended age scale for Greenland ice cores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 µatm) and low, current (390 µatm) CO2 levels, under regimes of fluctuating irradiances with or without UVR. Under both CO2 levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO2 showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO2-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Floating ice shelves buttress the flow of grounded tributary glaciers and their thickness and extent are particularly susceptible to changes in both climate and ocean forcing. Recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. However, the extent and magnitude of ice-shelf thickness change, its causes and its link to glacier flow rate are so poorly understood that its influence on the future of the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal for the first time the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary driver of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet that has led to accelerated glacier flow. The highest thinning rates (~7 m/a) occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen Seas and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic Ice Sheet mass balance, and hence global sea-level, on annual to decadal timescales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ice shelves strongly interact with coastal Antarctic sea ice and the associated ecosystem by creating conditions favourable to the formation of a sub-ice platelet layer. The close investigation of this phenomenon and its seasonal evolution remain a challenge due to logistical constraints and a lack of suitable methodology. In this study, we characterize the seasonal cycle of Antarctic fast ice adjacent to the Ekström Ice Shelf in the eastern Weddell Sea. We used a thermistor chain with the additional ability to record the temperature response induced by cyclic heating of resistors embedded in the chain. Vertical sea-ice temperature and heating profiles obtained daily between November 2012 and February 2014 were analyzed to determine sea-ice and snow evolution, and to calculate the basal energy budget. The residual heat flux translated into an ice-volume fraction in the platelet layer of 0.18 ± 0.09, which we reproduced by a independent model simulation and agrees with earlier results. Manual drillings revealed an average annual platelet-layer thickness increase of at least 4m, and an annual maximum thickness of 10m beneath second-year sea ice. The oceanic contribution dominated the total sea-ice production during the study, effectively accounting for up to 70% of second-year sea-ice growth. In summer, an oceanic heat flux of 21 W/m**2 led to a partial thinning of the platelet layer. Our results further show that the active heating method, in contrast to the acoustic sounding approach, is well suited to derive the fast-ice mass balance in regions influenced by ocean/ice-shelf interaction, as it allows sub-diurnal monitoring of the platelet-layer thickness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of Cenozoic silicoflagellates at three Ocean Drilling Program (ODP) Holes (660A, 662A, and 667A) was investigated to determine biostratigraphic and relative paleotemperature relations in the tropical Atlantic Ocean. This report presents the data obtained from a study of 37 samples and some preliminary comments on the data. The age of the single sparse assemblage at Hole 660A is late middle Eocene or late Eocene (Dictyocha hexacantha Zone); the sparse to common assemblages of Hole 667A are Oligocene and early Miocene and the common to abundant assemblages of Hole 662A are early Pliocene to Quaternary. Dissolution thinning of silicoflagellates is noted in most samples, even in Hole 662A, which is under the present productive Benguela Current.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urban forest health was surveyed on Roznik in Ljubljana (46.05141 N, 14.47797 E) in 2013 by two methods: ICP Forests and UFMO. ICP Forests is most commonly used monitoring programme in Europe - the International Co-operative Programme on the Assessment and Monitoring of Air Pollution Effects on Forests, which is based on systematic grid. UFMO method - Urban Forests Management Oriented method was developed in the frame of EMoNFUr Project - Establishing a monitoring network to assess lowland forest and urban plantations in Lombardy and urban forest in Slovenia (LIFE10 ENV/IT/000399). UFMO is based on non-linear transects (GPS tracks). ICP forests monitoring plots were established in July 2013 in the urban forest Roznik in Ljubljana .The 32 plots are located on sampling grid 500 × 500 m. The grid was down-scaled from the National Forest Monitoring survey, which bases on national sample grid 4 × 4 km. With the ICP forests method the following parameters for each tree within the 15 plots were gathered according to the ICP forests manual for Visual assessment of crown condition and damaging agents: tree species, percentage of defoliation, affected part of the tree, specification of affected part, location in crown, symptom, symptom specification, causal agents / factors, age of damage, damage extent, and damage extent on the trunk. With the UFMO method, the following parameters for each tree that needed sylviculture measure (felling, pruning, sanitary felling, thinning, etc.) were recorded: tree species, breast diameter, causal agent / damaging factor, GPS waypoint and GPS track. For overall picture in the urban forest health problems, also other biotic and abiotic damaging factors that did not require management action were recorded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the early 2000s the Greenland Ice Sheet experienced the largest ice-mass loss of the instrumental record, largely as a result of the acceleration, thinning and retreat of large outlet glaciers in West and southeast Greenland. The quasi-simultaneous change in the glaciers suggests a common climate forcing. Increasing air and ocean temperatures have been indicated as potential triggers. Here, we present a record of calving activity of Helheim Glacier, East Greenland, that extends back to about AD 1890, based on an analysis of sedimentary deposits from Sermilik Fjord, where Helheim Glacier terminates. Specifically, we use the annual deposition of and grains as a proxy for iceberg discharge. Our record reveals large fluctuations in calving rates, but the present high rate was reproduced only in the 1930s. A comparison with climate indices indicates that high calving activity coincides with a relatively strong influence of Atlantic water and a lower influence of polar water on the shelf off Greenland, as well as with warm summers and the negative phase of the North Atlantic Oscillation. Our analysis provides evidence that Helheim Glacier responds to short-term fluctuations of large-scale oceanic and atmospheric conditions, on timescales of 3-10 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the Three Mile Island accident, an important focus of pressurized water reactor (PWR) transient analyses has been a small-break loss-of-coolant accident (SBLOCA). In 2002, the discovery of thinning of the vessel head wall at the Davis Besse nuclear power plant reactor indicated the possibility of an SBLOCA in the upper head of the reactor vessel as a result of circumferential cracking of a control rod drive mechanism penetration nozzle - which has cast even greater importance on the study of SBLOCAs. Several experimental tests have been performed at the Large Scale Test Facility to simulate the behavior of a PWR during an upper-head SBLOCA. The last of these tests, Organisation for Economic Co-operation and Development Nuclear Energy Agency Rig of Safety Assessment (OECD/NEA ROSA) Test 6.1, was performed in 2005. This test was simulated with the TRACE 5.0 code, and good agreement with the experimental results was obtained. Additionally, a broad analysis of an upper-head SBLOCA with high-pressure safety injection failed in a Westinghouse PWR was performed taking into account different accident management actions and conditions in order to check their suitability. This issue has been analyzed also in the framework of the OECD/NEA ROSA project and the Code Applications and Maintenance Program (CAMP). The main conclusion is that the current emergency operating procedures for Westinghouse reactor design are adequate for these kinds of sequences, and they do not need to be modified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La pataca (Helianthus tuberosus L.) es una especie de cultivo con un alto potencial en la producción de hidratos de carbono de reserva en forma de polifructanos, especialmente inulina, que se acumulan temporalmente en los tallos en forma de polisacáridos para translocarse posteriormente a los tubérculos, donde son almacenados. Aunque tradicionalmente el producto de interés del cultivo son los tubérculos, que acumulan gran cantidad de hidratos de carbono fermentables (HCF) cuando se recogen al final del ciclo de desarrollo, en este trabajo se pretende evaluar el potencial de la pataca como productor de HCF a partir de los tallos cosechados en el momento de máximo contenido en HCF, mediante un sistema de cultivo plurianual. Se han realizado los siguientes estudios: i) Determinación del momento óptimo de cosecha en ensayos con 12 clones ii) Potencial del cultivo plurianual de la pataca en términos de producción anual de biomasa aérea y de HCF en cosechas sucesivas, iii) Ensayos de conservación de la biomasa aérea, iv) Estimación de los costes de las dos modalidades de cultivo de pataca para producción de HCF y v) Estimación de la sostenibilidad energética de la producción de bioetanol mediante la utilización de los subproductos. Para la determinación del momento óptimo de la cosecha de la biomasa aérea se ensayaron 12 clones de diferente precocidad en Madrid; 4 tempranos (Huertos de Moya, C-17, Columbia y D-19) y 8 tardíos (Boniches, China, K-8, Salmantina, Nahodka, C-13, INIA y Violeta de Rennes). El máximo contenido en HCF tuvo lugar en el estado fenológico de botón floral-flor que además coincidió con la máxima producción de biomasa aérea. De acuerdo con los resultados obtenidos, la cosecha de los clones tempranos se debería realizar en el mes de julio y en los clones tardíos en septiembre, siendo éstos últimos más productivos. La producción media más representativa entre los 12 clones, obtenida en el estado fenológico de botón floral fue de 23,40 t ms/ha (clon INIA), con un contenido medio en HCF de 30,30 % lo que supondría una producción potencial media de 7,06 t HCF/ha. La producción máxima en HCF se obtuvo en el clon Boniches con 7,61 t/ha y 22,81 t ms/ha de biomasa aérea. En el sistema de cultivo plurianual la cantidad de tallos por unidad de superficie aumenta cada año debido a la cantidad de tubérculos que van quedando en el terreno, sobre todo a partir del 3er año, lo que produce la disminución del peso unitario de los tallos, con el consiguiente riesgo de encamado. El aclareo de los tallos nacidos a principios de primavera mediante herbicidas tipo Glifosato o mediante una labor de rotocultor rebaja la densidad final de tallos y mejora los rendimientos del cultivo. En las experiencias de conservación de la biomasa aérea se obtuvo una buena conservación por un período de 6 meses de los HCF contenidos en los tallos secos empacados y almacenados bajo cubierta. Considerando que el rendimiento práctico de la fermentación alcohólica es de 0,5 l de etanol por cada kg de azúcar, la producción potencial de etanol para una cosecha de tallos de 7,06 t de HCF/ha sería de 3.530 l/ha. El bagazo producido en la extracción de los HCF de la biomasa aérea supondría 11,91 t/ha lo que utilizado para fines térmicos supone más de 3 veces la energía primaria requerida en el proceso de producción de etanol, considerando un poder calorífico inferior de 3.832,6 kcal/kg. Para una producción de HCF a partir de la biomasa aérea de 7,06 t/ha y en tubérculos al final del ciclo de 12,11 t/ha, los costes de producción estimados para cada uno de ellos fueron de 184,69 €/t para los HCF procedentes de la biomasa aérea y 311,30 €/t para los de tubérculos. Como resultado de este trabajo se puede concluir que la producción de HCF a partir de la biomasa aérea de pataca en cultivo plurianual, es viable desde un punto de vista técnico, con reducción de los costes de producción respecto al sistema tradicional de cosecha de tubérculos. Entre las ventajas técnicas de esta modalidad de cultivo, cabe destacar: la reducción de operaciones de cultivo, la facilidad y menor coste de la cosecha, y la posibilidad de conservación de los HCF en la biomasa cosechada sin mermas durante varios meses. Estas ventajas, compensan con creces el menor rendimiento por unidad de superficie que se obtiene con este sistema de cultivo frente al de cosecha de los tubérculos. Jerusalem artichoke (Helianthus tuberosus L.) (JA) is a crop with a high potential for the production of carbohydrates in the form of polyfructans, especially inulin, which are temporarily accumulated in the stems in the form of polysaccharides. Subsequently they are translocated to the tubers, where they are finally accumulated. In this work the potential of Jerusalem artichoke for fermentable carbohydrates from stems that are harvested at their peak of carbohydrates accumulation is assessed as compared to the traditional cultivation system that aims at the production of tubers harvested at the end of the growth cycle. Tubers are storage organs of polyfructans, namely fermentable carbohydrates. Studies addressed in this work were: i) Determination of the optimum period of time for stem harvesting as a function of clone precocity in a 12-clone field experiment; ii) Study of the potential of JA poly-annual crop regarding the annual yield of aerial biomass and fermentable carbohydrates (HCF) over the years; iii) Tests of storage of the aerial biomass, iv) Comparative analysis of the two JA cultivation systems for HCF production: the poly-annual system for aerial biomass harvesting versus the annual cultivation system for tubers and v) Estimation of the energy sustainability of the bioethanol production by using by-products of the production chain. In order to determine the best period of time for aerial biomass harvesting twelve JA clones of different precocity were tested in Madrid: four early clones (Huertos de Moya, C-17, Columbia and D-19) and eight late clones (Boniches, China, K-8 , Salmantina, Nahodka, C-13, INIA and Violeta de Rennes). Best time was between the phenological stages of floral buds (closed capitula) and blossom (opened capitula), period in which the peak of biomass production coincides with the peak of HCF accumulation in the stems. According to the results, the early clones should be harvested in July and the late ones in September, being the late clones more productive. The clone named INIA was the one that exhibited more steady yields in biomass over the 12 clones experimented. The average potential biomass production of this clone was 23.40 t dm/ha when harvested at the floral buds phenological stage; mean HCF content is 30.30%, representing 7.06 t HCF/ha yield. However, the highest HCF production was obtained for the clone Boniches, 7.61 t HCF/ha from a production of 22.81 t aerial biomass/ha. In the poly-annual cultivation system the number of stems per unit area increases over the years due to the increase in the number of tubers that are left under ground; this effect is particularly important after the 3rd year of the poly-annual crop and results in a decrease of the stems unit weight and a risk of lodging. Thinning of JA shoots in early spring, by means of an herbicide treatment based on glyphosate or by means of one pass with a rotary tiller, results in a decrease of the crop stem density and in higher crop yields. Tests of biomass storing showed that the method of keeping dried stems packed and stored under cover results in a good preservation of HCF for a period of six months at least. Assuming that the fermentation yield is 0.5 L ethanol per kg sugars and a HCF stem production of 7.06 t HCF/ha, the potential for bioethanol is estimated at 3530 L/ha. The use of bagasse -by-product of the process of HCF extraction from the JA stems- for thermal purposes would represent over 3 times the primary energy required for the industrial ethanol production process, assuming 11.91 t/ha bagasse and 3832.6 kcal/kg heating value. HCF production costs of 7.06 t HCF/ha yield from aerial biomass and HCF production costs of 12.11 t HCF/ha from tubers were estimated at 184.69 €/t HCF and 311.30 €/t HCF, respectively. It can be concluded that the production of HCF from JA stems, following a poly-annual cultivation system, can be feasible from a technical standpoint and lead to lower production costs as compared to the traditional annual cultivation system for the production of HCF from tubers. Among the technical advantages of the poly-annual cultivation system it is worth mentioning the reduction in crop operations, the ease and efficiency of harvesting operations and the possibility of HCF preservation without incurring in HCF losses during the storage period, which can last several months. These advantages might compensate the lower yield of HCF per unit area that is obtained in the poly-annual crop system, which aims at stems harvesting, versus the annual one, which involves tubers harvesting.