956 resultados para synchronous fluorescence spectroscopy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As fluoroquinolonas são antibióticos que têm um largo espectro de ação contra bactérias, especialmente Gram-negativas. O seu mecanismo de ação assenta na inibição de enzimas responsáveis pela replicação do DNA. Porém, devido ao seu uso indevido, o surgimento de resistência bacteriana a estes antibióticos tem-se tornado um grave problema de saúde pública. Uma vez que os seus alvos de ação se situam no meio intracelular, a redução da permeabilidade da membrana externa de bactérias Gram-negativas constitui um dos mecanismos de resistência mais conhecidos. Esta redução é associada à baixa expressão ou mutações em porinas necessárias para permitir o seu transporte, mais concretamente, da OmpF. Estudos prévios demonstraram que a coordenação de fluoroquinolonas com iões metálicos divalentes e 1,10-fenantrolina (genericamente designados metaloantibióticos) são potenciais candidatos como alternativa às fluoroquinolonas convencionais. Estes metaloantibióticos exibem um efeito antimicrobiano comparável ou superior à fluoroquinolona na forma livre, mas parecem ter uma via de translocação diferente, independente de porinas. Estas diferenças no mecanismo de captura podem ser fundamentais para contornar a resistência bacteriana. De forma a compreender o papel dos lípidos no mecanismo de entrada dos metaloantibióticos, estudou-se a interação e localização dos metaloantibióticos da Ciprofloxacina (2ª geração), da Levofloxacina (3ª geração) e Moxifloxacina (4ª geração) com um modelo de membranas de Escherichia coli desprovido de porinas. Estes estudos foram realizados através de técnicas de espectroscopia de fluorescência, por medições em modo estacionário e resolvida no tempo. Os coeficientes de partição determinados demonstraram uma interação mais elevada dos metaloantibióticos relativamente às respetivas fluoroquinolonas na forma livre, um facto que está diretamente relacionado com as espécies existentes em solução a pH fisiológico. Os estudos de localização mostraram que estes metaloantibióticos devem estar inseridos na membrana bacteriana, confirmando a sua entrada independente de porinas. Este mecanismo de entrada, pela via hidrofóbica, é potenciado por interações eletrostáticas entre as espécies catiónicas de metaloantibiótico que existem a pH 7,4 e os grupos carregados negativamente dos fosfolípidos da membrana. Desta forma, os resultados obtidos neste estudo sugerem que a via de entrada dos metaloantibióticos e das respetivas fluoroquinolonas deve ser diferente. Os metaloantibióticos são candidatos adequados para a realização de mais testes laboratoriais e uma alternativa promissora para substituir as fluoroquinolonas convencionais, uma vez que parecem ultrapassar um dos principais mecanismos de resistência bacteriana a esta classe de antibióticos.
Resumo:
Tese (Doutorado em Tecnologia Nuclear)
Resumo:
Dissertação (Mestrado em Tecnologia Nuclear)
Resumo:
The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.
Resumo:
Heavy metals are used in many industrial processestheirs discard can harm fel effects to the environment, becoming a serious problem. Many methods used for wastewater treatment have been reported in the literature, but many of them have high cost and low efficiency. The adsorption process has been used as effective for the metal remoal ions. This paper presents studies to evaluate the adsorption capacity of vermiculite as adsorbent for the heavy metals removal in a synthetic solution. The mineral vermiculite was characterized by differents techniques: specific surface area analysis by BET method, X-ray diffraction, raiosX fluorescence, spectroscopy in the infraredd region of, laser particle size analysis and specific gravity. The physical characteristics of the material presented was appropriate for the study of adsorption. The adsorption experiments weredriveal finite bath metod in synthetic solutions of copper, nickel, cadmium, lead and zinc. The results showed that the vermiculite has a high potential for adsorption, removing about 100% of ions and with removal capacity values about 85 ppm of metal in solution, 8.09 mg / g for cadmium, 8.39 mg/g for copper, 8.40 mg/g for lead, 8.26 mg/g for zinc and 8.38 mg/g of nickel. The experimental data fit in the Langmuir and Freundlich models. The kinetic datas showed a good correlation with the pseudo-second order model. It was conducteas a competition study among the metals using vermiculiti a adsorbent. Results showed that the presence of various metals in solution does not influence their removal at low concentrations, removing approximat wasely 100 % of all metals present in solutions
Resumo:
The refractory metal carbides have proven important in the development of engineering materials due to their properties such as high hardness, high melting point, high thermal conductivity and high chemical stability. The niobium carbide presents these characteristics. The compounds of niobium impregnated with copper also have excellent dielectric and magnetic properties, and furthermore, the Cu doping increases the catalytic activity in the oxidation processes of hydrogen. This study aimed to the synthesis of nanostructured materials CuNbC and niobium and copper oxide from precursor tris(oxalate) oxiniobate ammonium hydrate through gas-solid and solid-solid reaction, respectively. Both reactions were carried out at low temperature (1000°C) and short reaction time (2 hours). The niobium carbide was produced with 5 % and 11% of copper, and the niobium oxide with 5% of copper. The materials were characterized by X-Ray Diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF), infrared spectroscopy (IR), thermogravimetric (TG) and differential thermal analysis (DTA , BET and particle size Laser. From the XRD analysis and Rietveld refinement of CuNbC with S = 1.23, we observed the formation of niobium carbide and metallic copper with cubic structure. For the synthesis of mixed oxide made of niobium and copper, the formation of two distinct phases was observed: CuNb2O6 and Nb2O5, although the latter was present in small amounts
Resumo:
The assembly of outer membranes of the cell wall of Gram-negative bacteria and of various organelles of eukaryotic cells requires the evolutionarily conserved β-barrel-assembly machinery (BAM) complex. This thesis describes the biochemical and biophysical properties of the periplasmic domain of the β-barrel assembly machinery protein A (PD-BamA) of the E. coli BAM complex, its effect on insertion and folding of the Outer membrane protein A (OmpA) into lipid bilayers and the identification of regions of PD-BamA that may be involved in protein-protein interactions. The secondary structure of PD-BamA in mixed lipid bilayers, analyzed by Circular dichroism (CD) spectroscopy, contained less β-sheet at an increased content of phosphatidylglycerol (PG) in the lipid membrane. This result showed membrane binding, albeit only in the presence of negatively charged lipids. Fluorescence spectroscopy demonstrated that PD-BamA only binds to lipid bilayers containing the negatively charged DOPG, confirming the results of CD spectroscopy. PD-BamA did not bind to zwitterionic but overall neutral lipid bilayers. PD-BamA bound to OmpA at a stoichiometry of 1:1. PD-BamA strongly facilitated insertion and folding of OmpA into lipid membranes. Kinetics of PD-BamA mediated folding of OmpA was well described by two parallel folding processes, a fast folding process and a slow folding process, differing by 2-3 orders of magnitude in their rate constants. The folding yields of OmpA depended on the concentration of lipid membranes and also on the lipid head groups. The presence of PD-BamA resulted in increased folding yields of OmpA in negatively charged DOPG, but PD-BamA did not affect the folding kinetics of OmpA into bilayers of zwitterionic but overall neutral lipids. The efficiency of folding and insertion of OmpA into lipid bilayers strongly depended on the ratio PD-BamA/OmpA and was optimal at equimolar concentrations of PD-BamA and OmpA. To examine complexes of unfolded OmpA with PD-BamA in more detail, site-directed spectroscopy was used to explore contact regions in both, PD-BamA and OmpA. Similarly, contact regions were also investigated for another protein complex formed by PD-BamA and the lipoprotein BamD. The obtained data suggest, that the site of interaction on PD-BamA for OmpA might be oriented towards the exterior environment away from the preceding POTRA domains, but that PD-BamA is oriented with its short α-helix α1 of POTRA domain 5 towards the C-terminal end of BamD.
Resumo:
In farbstoffsensibilisierten Solarzellen (DSSC) spielen Chromophore, die als Lichtsammel- und Energie-/Elektronentransfersysteme fungieren, eine zentrale Rolle. Phthalocyanine mit ihren intensiven Absorptionsbanden um 400 nm und 700 nm besitzen großes Potential für die effektive Sensibilisierung von Solarzellen. Trotz ihrer vielversprechenden physikochemischen Eigenschaften und intensiver Bemühungen erreichen Phthalocyanin-sensibilisierte Solarzellen nicht die Effizienzen, die bisher mit anderen Chromophorklassen erzielt werden konnten. In der vorliegenden Dissertation wurde die Entwicklung effizienter Lichtsammelsysteme für DSSC auf der Basis von Aza-substituierten Phthalocyaninen, sogenannten Pyrazinoporphyrazinen, verfolgt. Ein besonderer Fokus lag dabei auf einer Verbesserung der Absorptionseigenschaften der Chromophore im Bereich ihrer intrinsischen Absorptionslücke zwischen den Maxima um 400 nm und 700 nm. Um diese optische Lücke zu schließen wurden komplementär absorbierende BODIPY-Farbstoffe kovalent an synthetisch maßgeschneiderte Porphyrazine gebunden. Insgesamt wurden sechs neue Porphyrazin-Sensibilisatoren synthetisiert und photophysikalisch sowie elektrochemisch charakterisiert. Alle in dieser Arbeit untersuchten Porphyrazine tragen sterisch anspruchsvolle Tri(p-tolyl)propinyl-Gruppen um Agglomerationen zu vermeiden. Darüber hinaus wurden die Porphyrazine peripher entweder mit Hydroxy- oder Carboxygruppen als Bindungsstellen für oxidische Materialien ausgestattet sowie mit sechs BODIPY-Auxiliarfarbstoffen funktionalisiert, deren Substitutionsmuster variiert wurden. Zur Darstellung der komplexen Porphyrazine wurde eine Syntheseroute erarbeitet, die statistische Cyclisierungen unterschiedlicher Dinitril-Vorstufen beinhaltete und es ermöglichte, funktionelle Gruppen erst am vorgeformten Makrocyclus einzuführen. Die photophysikalische Untersuchung der hochfunktionalisierten Farbstoffe erfolgte über UV/Vis- und Fluoreszenzspektroskopie. Im Fall der BODIPY-Porphyrazin-Hybride schließt die zusätzliche Absorptionsbande der peripheren BODIPY-Einheiten die intrinsische Absorptionslücke der Porphyrazine. Die Hybride zeigen somit eine breite Absorption über den gesamten sichtbaren Spektralbereich mit hohen Extinktionskoeffizienten von ca. 4·10^5 M^−1cm^−1. Mittels Fluoreszenz- und Anregungsspektren wurde ein photoinduzierter Energie-transfer von den BODIPY-Einheiten auf den Porphyrazinkern nachgewiesen. Das elektrochemische Verhalten der BODIPY- und Porphyrazin-Verbindungen wurde mittels Cyclo- und Square-Wave-Voltammetrie untersucht. Die Effizienzen der Lichtenergieumwandlung wurden mit Hilfe von selbst-hergestellten und standardisierten farbstoffsensibilisierten Solarzellen bewertet. Alle Solarzellen zeigten eine messbare Photoaktivität unter Bestrahlung. Die Wirkungsgrade der Zellen lagen jedoch alle unter 1 %. Generell führten die Carboxyl-funktionalisierten Porphyrazine zu besseren Wirkungsgraden als die analogen, mit der tripodalen Ankergruppe ausgestatteten Derivate. Die mit Hilfe von Adsorptionsisothermen ermittelten Bindungskonstanten der Adsorption der Farbstoffe auf der TiO2-Oberfläche zeigten, dass beide Hafteinheiten eine feste Verankerung der Chromophore auf den TiO2-Elektroden ermöglichten. Insgesamt wirkte sich die Präsenz der peripheren BODIPY-Farbstoffe positiv auf die Wirkungsgrade der Solarzellen aus, jedoch nur in geringem Maß. Dieses Ergebnis wurde hauptsächlich auf die geringe Energiedifferenz zwischen der Leitungsbandkante des TiO2 und den LUMO-Energieniveaus der Chromophore zurückgeführt. Zusätzlich scheinen konkurrierende Prozesse wie die direkte Photoelektroneninjektion von den BODIPY-Einheiten in das TiO2 eine wichtige Rolle zu spielen. Neben der Anwendung in DSSC wurde die Wechselwirkung der Porphyrazine mit Graphen untersucht. Hierzu wurden A3B-Porphyrazine mit Pyrenyl-Seitenketten ausgestattet, die eine nicht-kovalente Verankerung des Chromophors auf Graphen ermöglichen. UV/Vis- und Fluoreszenzmessungen gaben u.a. erste Hinweise auf eine elektronische Kommunikation zwischen den beiden Hybridpartnern.
Resumo:
Fluorescence spectroscopy andmicroscopy have been utilized as tools in membrane biophysics for decades now. Because phospholipids are non-fluorescent, the use of extrinsic membrane probes in this context is commonplace. Among the latter, 1,6-diphenylhexatriene (DPH) and its trimethylammonium derivative (TMA-DPH) have been extensively used. It is widely believed that, owing to its additional charged group, TMA-DPH is anchored at the lipid/water interface and reports on a bilayer region that is distinct from that of the hydrophobic DPH. In this study, we employ atomistic MD simulations to characterize the behavior of DPH and TMA-DPH in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and POPC/cholesterol (4:1) bilayers. We show that although the dynamics of TMA-DPH in thesemembranes is noticeably more hindered than that of DPH, the location of the average fluorophore of TMA-DPH is only ~3–4 Å more shallow than that of DPH. The hindrance observed in the translational and rotational motions of TMA-DPH compared to DPH is mainly not due to significant differences in depth, but to the favorable electrostatic interactions of the former with electronegative lipid atoms instead. By revealing detailed insights on the behavior of these two probes, our results are useful both in the interpretation of past work and in the planning of future experiments using themasmembrane reporters.