877 resultados para random regular graphs
Resumo:
Consider an undirected graph G and a subgraph of G, H. A q-backbone k-colouring of (G,H) is a mapping f: V(G) {1, 2, ..., k} such that G is properly coloured and for each edge of H, the colours of its endpoints differ by at least q. The minimum number k for which there is a backbone k-colouring of (G,H) is the backbone chromatic number, BBCq(G,H). It has been proved that backbone k-colouring of (G,T) is at most 4 if G is a connected C4-free planar graph or non-bipartite C5-free planar graph or Cj-free, j∈{6,7,8} planar graph without adjacent triangles. In this thesis we improve the results mentioned above and prove that 2-backbone k-colouring of any connected planar graphs without adjacent triangles is at most 4 by using a discharging method. In the second part of this thesis we further improve these results by proving that for any graph G with χ(G) ≥ 4, BBC(G,T) = χ(G). In fact, we prove the stronger result that a backbone tree T in G exists, such that ∀ uv ∈ T, |f(u)-f(v)|=2 or |f(u)-f(v)| ≥ k-2, k = χ(G). For the case that G is a planar graph, according to Four Colour Theorem, χ(G) = 4; so, BBC(G,T) = 4.
Resumo:
Diagrams (charts and graphs) made into a booklet with a newspaper cover. This booklet contains cross sections of the back ditch on the south side of the Welland Canal feeder, west of the Marshville culverts (45 pages, hand drawn). This was created by Fred Holmes, Oct. 3, 1857.
Resumo:
Charts and graphs of cross sections from Brown’s ditch culvert to the main drain, cross sections from the feeder on the road allowance between lots 26 and 27 in the 5th concession of Humberstone, Cross sections of the main drain from Lyons Creek culvert to the road allowance between lots 7 and 8 in Wainfleet and cross selections of the old ditch on the west side of the road allowance between lots 17 and 18 in the 3rd concession in Wainfleet (8 pages, hand drawn), n.d.
Resumo:
Tesis (Maestría en Psicología con orientación en Psicología Laboral y Organizacional) UANL, 2013.
Resumo:
Tesis (Maestría en Psicología con orientación en Psicología Laboral y Organizacional) UANL, 2013.
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL