947 resultados para pulsed rapid thermal annealing (PRTA)
Resumo:
TiO2 thin films are prepared on fused silica with conventional electron beam evaporation deposition. After annealed at different temperatures for 4h, the spectra and XRD patterns of the TiO2 thin film are obtained. Weak absorption of coatings is measured by the surface thermal lensing technique, and laser-induced damage threshold (LIDT) is determined. It is found that with the increasing annealing temperature, the transmittance of TiO2 films decreases. Especially when coatings are annealed at high temperature over 1173K, the optical loss is very serious. Weak absorption detection indicates that the absorption of coatings decreases firstly and then increases, and the absorption and defects play major roles in the LIDT of TiO2 thin films.
Resumo:
Zirconium dioxide (ZrO2) thin films were deposited on BK7 glass substrates by the electron beam evaporation method. A continuous wave CO2 laser was used to anneal the ZrO2 thin films to investigate whether beneficial changes could be produced. After annealing at different laser scanning speeds by CO2 laser, weak absorption of the coatings was measured by the surface thermal lensing (STL) technique, and then laser-induced damage threshold (LIDT) was also determined. It was found that the weak absorption decreased first, while the laser scanning speed is below some value, then increased. The LIDT of the ZrO2 coatings decreased greatly when the laser scanning speeds were below some value. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was defect-initiated both for annealed and as-deposited samples. The influences of post-deposition CO2 laser annealing on the structural and mechanical properties of the films have also been investigated by X-ray diffraction and ZYGO interferometer. It was found that the microstructure of the ZrO2 films did not change. The residual stress in ZrO2 films showed a tendency from tensile to compressive after CO, laser annealing, and the variation quantity of the residual stress increased with decreasing laser scanning speed. The residual stress may be mitigated to some extent at proper treatment parameters. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Ta2O5 films were deposited using the conventional electron beam evaporation method and then annealed at temperatures in the range 373-673 K. Chemical composition, scattering and absorption were examined by X-ray photoelectron spectroscopy (XPS), total integrated scattering (TIS) measurement and the surface thermal lensing (m) technique, respectively. The laser-induced damage threshold (LIDT) was assessed using the output from an Nd:YAG laser with a pulse length of 12 ns. The results showed that the improvement of the LIDT after annealing was due to the reduced substoichiometric and structural defects present in the film. The LIDT increased slightly below 573K and then increased significantly with increase in annealing temperature, which could be attributed to different dominant defects. Moreover, the root mean square (RMS) roughness and scattering had little effect on the LIDT, while the absorption and the LIDT were in accord with a general relation. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The thermal stability of electron beam deposited TiO2 monolayers and TiO2/SiO2 high reflectors (HR) during 300 to 1100 degrees C annealing is studied. It is found that the optical loss of film increases with the increase in annealing temperature, due to the phase change, crystallisation and deoxidising of film. Scattering loss dominates the optical property degradation of film below 900 degrees C, while the absorption is another factor at 1100 degrees C. The increase in refractive index and decrease in physical thickness of TiO2 layer shift the spectra of HR above 900 degrees C. The possible crack mechanism on the surface of HR during annealing is discussed. Guidance for application on high temperature stable optical coatings is given.
Resumo:
We demonstrate a controllable formation process of wave-like patterns in thermally unstable surface-capped polymer films on a rigid substrate. Self-ordered wave-like structures over a large area can be created by applying a small lateral tension to the film, whereupon it becomes unstable. A clear mode selection process which includes creation, decay and interference between coexisting waves at different annealing conditions has been observed, which makes it possible to restrain the patterns which are formed finally. Our results provide a clear and new evidence of spinodal behaviour in such a film due to thermal instability. Furthermore, we show that the well-controlled patterns generated in such a process can be used to fabricate nanostructures for various applications.
Resumo:
The annealing behaviour of doses up to 4. 10**1**6 ions/cm**2 implanted at ion currents up to 10ma is described. Differences between rapid isothermal and furnace annealing in the measured sheet resistances are due to different amounts of diffusion and to loss of dopant by evaporation. Implantation at high currents (10ma) does not appear to affect the quality of the regrown material provided the temperature rise during implantation is small.
Resumo:
The crystal quality of 0.3-μm-thick as-grown epitaxial silicon-on-sapphire (SOS) was improved using solid-phase epitaxy (SPE) by implantation with silicon to 1015 ions/cm2 at 175 keV and rapid annealing using electron-beam heating, n-channel and p-channel transistormobilities increased by 31 and 19 percent, respectively, and a reduction in ring-oscillator stage delay confirmed that crystal defects near the upper silicon surface had been removed. Leakage in n-channel transistors was not significantly affected by the regrowth process but for p-channel transistors back-channel leakage was considerably greater than for the control devices. This is attributed to aluminum released by damage to the sapphire during silicon implantation. © 1985 IEEE
Resumo:
This paper reviews the advances that flash lamp annealing brings to the processing of the most frequently used semiconductor materials, namely silicon and silicon carbide, thus enabling the fabrication of novel microelectronic structures and materials. The paper describes how such developments can translate into important practical applications leading to a wide range of technological benefits. Opportunities in ultra-shallow junction formation, heteroepitaxial growth of thin films of cubic silicon carbide on silicon, and crystallization of amorphous silicon films, along with the technical reasons for using flash lamp annealing are discussed in the context of state-of-the-art materials processing. © 2005 IEEE.
Resumo:
The Accelerator Driven Subcritical Reactor (ADSR) is one of the reactor designs proposed for future nuclear energy production. Interest in the ADSR arises from its enhanced and intrinsic safety characteristics, as well as its potential ability to utilize the large global reserves of thorium and to burn legacy actinide waste from other reactors and decommissioned nuclear weapons. The ADSR concept is based on the coupling of a particle accelerator and a subcritical core by means of a neutron spallation target interface. One of the candidate accelerator technologies receiving increasing attention, the Fixed Field Alternating Gradient (FFAG) accelerator, generates a pulsed proton beam. This paper investigates the impact of pulsed proton beam operation on the mechanical integrity of the fuel pin cladding. A pulsed beam induces repetitive temperature changes in the reactor core which lead to cyclic thermal stresses in the cladding. To perform the thermal analysis aspects of this study a code that couples the neutron kinetics of a subcritical core to a cylindrical geometry heat transfer model was developed. This code, named PTS-ADS, enables temperature variations in the cladding to be calculated. These results are then used to perform thermal fatigue analysis and to predict the stress-life behaviour of the cladding. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The airflow and thermal stratification produced by a localised heat source located at floor level in a closed room is of considerable practical interest and is commonly referred to as a 'filling box'. In rooms with low aspect ratios H/R ≲ 1 (room height H to characteristic horizontal dimension R) the thermal plume spreads laterally on reaching the ceiling and a descending horizontal 'front' forms separating a stably stratified, warm upper region from cooler air below. The stratification is well predicted for H/R ≲ 1 by the original filling box model of Baines and Turner (J. Fluid. Mech. 37 (1968) 51). This model represents a somewhat idealised situation of a plume rising from a point source of buoyancy alone-in particular the momentum flux at the source is zero. In practical situations, real sources of heating and cooling in a ventilation system often include initial fluxes of both buoyancy and momentum, e.g. where a heating system vents warm air into a space. This paper describes laboratory experiments to determine the dependence of the 'front' formation and stratification on the source momentum and buoyancy fluxes of a single source, and on the location and relative strengths of two sources from which momentum and buoyancy fluxes were supplied separately. For a single source with a non-zero input of momentum, the rate of descent of the front is more rapid than for the case of zero source momentum flux and increases with increasing momentum input. Increasing the source momentum flux effectively increases the height of the enclosure, and leads to enhanced overturning motions and finally to complete mixing for highly momentum-driven flows. Stratified flows may be maintained by reducing the aspect ratio of the enclosure. At these low aspect ratios different long-time behaviour is observed depending on the nature of the heat input. A constant heat flux always produces a stratified interior at large times. On the other hand, a constant temperature supply ultimately produces a well-mixed space at the supply temperature. For separate sources of momentum and buoyancy, the developing stratification is shown to be strongly dependent on the separation of the sources and their relative strengths. Even at small separation distances the stratification initially exhibits horizontal inhomogeneity with localised regions of warm fluid (from the buoyancy source) and cool fluid. This inhomogeneity is less pronounced as the strength of one source is increased relative to the other. Regardless of the strengths of the sources, a constant buoyancy flux source dominates after sufficiently large times, although the strength of the momentum source determines whether the enclosure is initially well mixed (strong momentum source) or stably stratified (weak momentum source). © 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Recent progress in material science has proved that high-temperature superconductors, such as bulk melt-processed yttrium barium copper oxide (YBCO) single domains, have a great potential to trap significant magnetic fields. In this paper, we will describe a novel method of YBCO magnetization that only requires the applied field to be at the level of a permanent magnet. Instead of applying a pulsed high magnetic field on the YBCO, a thermally actuated material (TAM), such as Mg0.15}hbox{Cu}0.15} hbox{Zn0.7 Ti0.04}Fe1.96boxO4, has been used as an intermedium to create a travelling magnetic field by changing the local temperature so that the local permeability is changed to build up the magnetization of the YBCO gradually after multiple pumping cycles. It is well known that the relative permeability of ferrite is a function of temperature and its electromagnetic properties can be greatly changed by adding dopants such as Mg or Ti; therefore, it is considered to be the most promising TAM for future flux pumping technology. Ferrite samples were fabricated by means of the conventional ceramic method with different dopants. Zinc and iron oxides were used as raw materials. The samples were sintered at 1100 C, 1200 C} , and 1300 C. The relative permeability of the samples was measured at temperatures ranging from 77 to 300 K. This work investigates the variation of the magnetic properties of ferrites with different heat treatments and doping elements and gives a smart insight into finding better ferrites suitable for flux pumping technology. © 2002-2011 IEEE.
Resumo:
The efficiency of the injection and recombination processes in InGaN/GaN LEDs is governed by the properties of the active region of the devices, which strongly depend on the conditions used for the growth of the epitaxial material. To improve device quality, it is very important to understand how the high temperatures used during the growth process can modify the quality of the epitaxial material. With this paper we present a study of the modifications in the properties of InGaN/GaN LED structures induced by high temperature annealing: thermal stress tests were carried out at 900 °C, in nitrogen atmosphere, on selected samples. The efficiency and the recombination dynamics were evaluated by photoluminescence measurements (both integrated and time-resolved), while the properties of the epitaxial material were studied by Secondary Ion Mass Spectroscopy (SIMS) and Rutherford Backscattering (RBS) channeling measurements. Results indicate that exposure to high temperatures may lead to: (i) a significant increase in the photoluminescence efficiency of the devices; (ii) a decrease in the parasitic emission bands located between 380 nm and 400 nm; (iii) an increase in carrier lifetime, as detected by time-resolved photoluminescence measurements. The increase in device efficiency is tentatively ascribed to an improvement in the crystallographic quality of the samples. © 2013 SPIE.
Resumo:
In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.(1,2) These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.(2) Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.(3-5) The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.
Resumo:
We report on optimizing the GaAs capping layer growth of 1.3 mu m InAs quantum dots (QDs) by a combined two-temperature and annealing process at low temperatures using metalorganic chemical vapor deposition. The initial part (tnm) of the capping layer is deposited at a low temperature of 500 degrees C, which is the same for the growth of both the QDs and a 5-nm-thick In0.15Ga0.85As strain-reducing capping layer on the QDs, while the remaining part is grown at a higher temperature of 560 degrees C after a rapid temperature rise and subsequent annealing period at this temperature. The capping layer is deposited at the low temperatures (<= 560 degrees C) to avoid postgrowth annealing effect that can blueshift the emission wavelength of the QDs. We demonstrate the existence of an optimum t (=5 nm) and a critical annealing time (>= 450s) during the capping, resulting in significantly enhanced photoluminescence from the QDs. This significant enhancement in photoluminescence is attributed to a dramatic reduction of defects due to the optimized capping growth. The technique reported here has important implications for realizing stacked 1.3 mu m InAs/GaAs QD lasers. (C) 2008 Elsevier B.V. All rights reserved.