908 resultados para predictive analytics
Resumo:
This document presents theimplementation ofa Student Behavior Predictor Viewer(SBPV)for a student predictive model. The student predictive model is part of an intelligent tutoring system, and is built from logs of students’ behaviors in the “Virtual Laboratory of Agroforestry Biotechnology”implemented in a previous work.The SBPVis a tool for visualizing a 2D graphical representationof the extended automaton associated with any of the clusters ofthe student predictive model. Apart from visualizing the extended automaton, the SBPV supports the navigation across the automaton by means of desktop devices. More precisely, the SBPV allows user to move through the automaton, to zoom in/out the graphic or to locate a given state. In addition, the SBPV also allows user to modify the default layout of the automaton on the screen by changing the position of the states by means of the mouse. To developthe SBPV, a web applicationwas designedand implementedrelying on HTML5, JavaScript and C#.
Resumo:
La última década ha sido testigo de importantes avances en el campo de la tecnología de reconocimiento de voz. Los sistemas comerciales existentes actualmente poseen la capacidad de reconocer habla continua de múltiples locutores, consiguiendo valores aceptables de error, y sin la necesidad de realizar procedimientos explícitos de adaptación. A pesar del buen momento que vive esta tecnología, el reconocimiento de voz dista de ser un problema resuelto. La mayoría de estos sistemas de reconocimiento se ajustan a dominios particulares y su eficacia depende de manera significativa, entre otros muchos aspectos, de la similitud que exista entre el modelo de lenguaje utilizado y la tarea específica para la cual se está empleando. Esta dependencia cobra aún más importancia en aquellos escenarios en los cuales las propiedades estadísticas del lenguaje varían a lo largo del tiempo, como por ejemplo, en dominios de aplicación que involucren habla espontánea y múltiples temáticas. En los últimos años se ha evidenciado un constante esfuerzo por mejorar los sistemas de reconocimiento para tales dominios. Esto se ha hecho, entre otros muchos enfoques, a través de técnicas automáticas de adaptación. Estas técnicas son aplicadas a sistemas ya existentes, dado que exportar el sistema a una nueva tarea o dominio puede requerir tiempo a la vez que resultar costoso. Las técnicas de adaptación requieren fuentes adicionales de información, y en este sentido, el lenguaje hablado puede aportar algunas de ellas. El habla no sólo transmite un mensaje, también transmite información acerca del contexto en el cual se desarrolla la comunicación hablada (e.g. acerca del tema sobre el cual se está hablando). Por tanto, cuando nos comunicamos a través del habla, es posible identificar los elementos del lenguaje que caracterizan el contexto, y al mismo tiempo, rastrear los cambios que ocurren en estos elementos a lo largo del tiempo. Esta información podría ser capturada y aprovechada por medio de técnicas de recuperación de información (information retrieval) y de aprendizaje de máquina (machine learning). Esto podría permitirnos, dentro del desarrollo de mejores sistemas automáticos de reconocimiento de voz, mejorar la adaptación de modelos del lenguaje a las condiciones del contexto, y por tanto, robustecer al sistema de reconocimiento en dominios con condiciones variables (tales como variaciones potenciales en el vocabulario, el estilo y la temática). En este sentido, la principal contribución de esta Tesis es la propuesta y evaluación de un marco de contextualización motivado por el análisis temático y basado en la adaptación dinámica y no supervisada de modelos de lenguaje para el robustecimiento de un sistema automático de reconocimiento de voz. Esta adaptación toma como base distintos enfoque de los sistemas mencionados (de recuperación de información y aprendizaje de máquina) mediante los cuales buscamos identificar las temáticas sobre las cuales se está hablando en una grabación de audio. Dicha identificación, por lo tanto, permite realizar una adaptación del modelo de lenguaje de acuerdo a las condiciones del contexto. El marco de contextualización propuesto se puede dividir en dos sistemas principales: un sistema de identificación de temática y un sistema de adaptación dinámica de modelos de lenguaje. Esta Tesis puede describirse en detalle desde la perspectiva de las contribuciones particulares realizadas en cada uno de los campos que componen el marco propuesto: _ En lo referente al sistema de identificación de temática, nos hemos enfocado en aportar mejoras a las técnicas de pre-procesamiento de documentos, asimismo en contribuir a la definición de criterios más robustos para la selección de index-terms. – La eficiencia de los sistemas basados tanto en técnicas de recuperación de información como en técnicas de aprendizaje de máquina, y específicamente de aquellos sistemas que particularizan en la tarea de identificación de temática, depende, en gran medida, de los mecanismos de preprocesamiento que se aplican a los documentos. Entre las múltiples operaciones que hacen parte de un esquema de preprocesamiento, la selección adecuada de los términos de indexado (index-terms) es crucial para establecer relaciones semánticas y conceptuales entre los términos y los documentos. Este proceso también puede verse afectado, o bien por una mala elección de stopwords, o bien por la falta de precisión en la definición de reglas de lematización. En este sentido, en este trabajo comparamos y evaluamos diferentes criterios para el preprocesamiento de los documentos, así como también distintas estrategias para la selección de los index-terms. Esto nos permite no sólo reducir el tamaño de la estructura de indexación, sino también mejorar el proceso de identificación de temática. – Uno de los aspectos más importantes en cuanto al rendimiento de los sistemas de identificación de temática es la asignación de diferentes pesos a los términos de acuerdo a su contribución al contenido del documento. En este trabajo evaluamos y proponemos enfoques alternativos a los esquemas tradicionales de ponderado de términos (tales como tf-idf ) que nos permitan mejorar la especificidad de los términos, así como también discriminar mejor las temáticas de los documentos. _ Respecto a la adaptación dinámica de modelos de lenguaje, hemos dividimos el proceso de contextualización en varios pasos. – Para la generación de modelos de lenguaje basados en temática, proponemos dos tipos de enfoques: un enfoque supervisado y un enfoque no supervisado. En el primero de ellos nos basamos en las etiquetas de temática que originalmente acompañan a los documentos del corpus que empleamos. A partir de estas, agrupamos los documentos que forman parte de la misma temática y generamos modelos de lenguaje a partir de dichos grupos. Sin embargo, uno de los objetivos que se persigue en esta Tesis es evaluar si el uso de estas etiquetas para la generación de modelos es óptimo en términos del rendimiento del reconocedor. Por esta razón, nosotros proponemos un segundo enfoque, un enfoque no supervisado, en el cual el objetivo es agrupar, automáticamente, los documentos en clusters temáticos, basándonos en la similaridad semántica existente entre los documentos. Por medio de enfoques de agrupamiento conseguimos mejorar la cohesión conceptual y semántica en cada uno de los clusters, lo que a su vez nos permitió refinar los modelos de lenguaje basados en temática y mejorar el rendimiento del sistema de reconocimiento. – Desarrollamos diversas estrategias para generar un modelo de lenguaje dependiente del contexto. Nuestro objetivo es que este modelo refleje el contexto semántico del habla, i.e. las temáticas más relevantes que se están discutiendo. Este modelo es generado por medio de la interpolación lineal entre aquellos modelos de lenguaje basados en temática que estén relacionados con las temáticas más relevantes. La estimación de los pesos de interpolación está basada principalmente en el resultado del proceso de identificación de temática. – Finalmente, proponemos una metodología para la adaptación dinámica de un modelo de lenguaje general. El proceso de adaptación tiene en cuenta no sólo al modelo dependiente del contexto sino también a la información entregada por el proceso de identificación de temática. El esquema usado para la adaptación es una interpolación lineal entre el modelo general y el modelo dependiente de contexto. Estudiamos también diferentes enfoques para determinar los pesos de interpolación entre ambos modelos. Una vez definida la base teórica de nuestro marco de contextualización, proponemos su aplicación dentro de un sistema automático de reconocimiento de voz. Para esto, nos enfocamos en dos aspectos: la contextualización de los modelos de lenguaje empleados por el sistema y la incorporación de información semántica en el proceso de adaptación basado en temática. En esta Tesis proponemos un marco experimental basado en una arquitectura de reconocimiento en ‘dos etapas’. En la primera etapa, empleamos sistemas basados en técnicas de recuperación de información y aprendizaje de máquina para identificar las temáticas sobre las cuales se habla en una transcripción de un segmento de audio. Esta transcripción es generada por el sistema de reconocimiento empleando un modelo de lenguaje general. De acuerdo con la relevancia de las temáticas que han sido identificadas, se lleva a cabo la adaptación dinámica del modelo de lenguaje. En la segunda etapa de la arquitectura de reconocimiento, usamos este modelo adaptado para realizar de nuevo el reconocimiento del segmento de audio. Para determinar los beneficios del marco de trabajo propuesto, llevamos a cabo la evaluación de cada uno de los sistemas principales previamente mencionados. Esta evaluación es realizada sobre discursos en el dominio de la política usando la base de datos EPPS (European Parliamentary Plenary Sessions - Sesiones Plenarias del Parlamento Europeo) del proyecto europeo TC-STAR. Analizamos distintas métricas acerca del rendimiento de los sistemas y evaluamos las mejoras propuestas con respecto a los sistemas de referencia. ABSTRACT The last decade has witnessed major advances in speech recognition technology. Today’s commercial systems are able to recognize continuous speech from numerous speakers, with acceptable levels of error and without the need for an explicit adaptation procedure. Despite this progress, speech recognition is far from being a solved problem. Most of these systems are adjusted to a particular domain and their efficacy depends significantly, among many other aspects, on the similarity between the language model used and the task that is being addressed. This dependence is even more important in scenarios where the statistical properties of the language fluctuates throughout the time, for example, in application domains involving spontaneous and multitopic speech. Over the last years there has been an increasing effort in enhancing the speech recognition systems for such domains. This has been done, among other approaches, by means of techniques of automatic adaptation. These techniques are applied to the existing systems, specially since exporting the system to a new task or domain may be both time-consuming and expensive. Adaptation techniques require additional sources of information, and the spoken language could provide some of them. It must be considered that speech not only conveys a message, it also provides information on the context in which the spoken communication takes place (e.g. on the subject on which it is being talked about). Therefore, when we communicate through speech, it could be feasible to identify the elements of the language that characterize the context, and at the same time, to track the changes that occur in those elements over time. This information can be extracted and exploited through techniques of information retrieval and machine learning. This allows us, within the development of more robust speech recognition systems, to enhance the adaptation of language models to the conditions of the context, thus strengthening the recognition system for domains under changing conditions (such as potential variations in vocabulary, style and topic). In this sense, the main contribution of this Thesis is the proposal and evaluation of a framework of topic-motivated contextualization based on the dynamic and non-supervised adaptation of language models for the enhancement of an automatic speech recognition system. This adaptation is based on an combined approach (from the perspective of both information retrieval and machine learning fields) whereby we identify the topics that are being discussed in an audio recording. The topic identification, therefore, enables the system to perform an adaptation of the language model according to the contextual conditions. The proposed framework can be divided in two major systems: a topic identification system and a dynamic language model adaptation system. This Thesis can be outlined from the perspective of the particular contributions made in each of the fields that composes the proposed framework: _ Regarding the topic identification system, we have focused on the enhancement of the document preprocessing techniques in addition to contributing in the definition of more robust criteria for the selection of index-terms. – Within both information retrieval and machine learning based approaches, the efficiency of topic identification systems, depends, to a large extent, on the mechanisms of preprocessing applied to the documents. Among the many operations that encloses the preprocessing procedures, an adequate selection of index-terms is critical to establish conceptual and semantic relationships between terms and documents. This process might also be weakened by a poor choice of stopwords or lack of precision in defining stemming rules. In this regard we compare and evaluate different criteria for preprocessing the documents, as well as for improving the selection of the index-terms. This allows us to not only reduce the size of the indexing structure but also to strengthen the topic identification process. – One of the most crucial aspects, in relation to the performance of topic identification systems, is to assign different weights to different terms depending on their contribution to the content of the document. In this sense we evaluate and propose alternative approaches to traditional weighting schemes (such as tf-idf ) that allow us to improve the specificity of terms, and to better identify the topics that are related to documents. _ Regarding the dynamic language model adaptation, we divide the contextualization process into different steps. – We propose supervised and unsupervised approaches for the generation of topic-based language models. The first of them is intended to generate topic-based language models by grouping the documents, in the training set, according to the original topic labels of the corpus. Nevertheless, a goal of this Thesis is to evaluate whether or not the use of these labels to generate language models is optimal in terms of recognition accuracy. For this reason, we propose a second approach, an unsupervised one, in which the objective is to group the data in the training set into automatic topic clusters based on the semantic similarity between the documents. By means of clustering approaches we expect to obtain a more cohesive association of the documents that are related by similar concepts, thus improving the coverage of the topic-based language models and enhancing the performance of the recognition system. – We develop various strategies in order to create a context-dependent language model. Our aim is that this model reflects the semantic context of the current utterance, i.e. the most relevant topics that are being discussed. This model is generated by means of a linear interpolation between the topic-based language models related to the most relevant topics. The estimation of the interpolation weights is based mainly on the outcome of the topic identification process. – Finally, we propose a methodology for the dynamic adaptation of a background language model. The adaptation process takes into account the context-dependent model as well as the information provided by the topic identification process. The scheme used for the adaptation is a linear interpolation between the background model and the context-dependent one. We also study different approaches to determine the interpolation weights used in this adaptation scheme. Once we defined the basis of our topic-motivated contextualization framework, we propose its application into an automatic speech recognition system. We focus on two aspects: the contextualization of the language models used by the system, and the incorporation of semantic-related information into a topic-based adaptation process. To achieve this, we propose an experimental framework based in ‘a two stages’ recognition architecture. In the first stage of the architecture, Information Retrieval and Machine Learning techniques are used to identify the topics in a transcription of an audio segment. This transcription is generated by the recognition system using a background language model. According to the confidence on the topics that have been identified, the dynamic language model adaptation is carried out. In the second stage of the recognition architecture, an adapted language model is used to re-decode the utterance. To test the benefits of the proposed framework, we carry out the evaluation of each of the major systems aforementioned. The evaluation is conducted on speeches of political domain using the EPPS (European Parliamentary Plenary Sessions) database from the European TC-STAR project. We analyse several performance metrics that allow us to compare the improvements of the proposed systems against the baseline ones.
Resumo:
La web ha evolucionado hacia la participación en la creación de contenido tanto por desarrolladores expertos como por usuarios finales sin un gran conocimiento en esta área. A pesar de que su uso es igual de válido y funcional, las diferencias entre la calidad de los productos desarrollados por ambos puede llegar a ser considerable. Esta característica se observa con mayor claridad cuando se analizan los web components. El trabajo consiste en el desarrollo de un entorno capaz de recoger las métricas de calidad de los componentes, basadas en la interacción con ellos por parte de los usuarios. A partir de las métricas obtenidas, se determinará su calidad para realizar una mejora de la misma, en función de las características valoradas. La selección de las métricas se realiza mediante un estudio de las características que definen a un componente, y permiten ser analizadas. Para poder llevar a cabo la construcción del portal, se ha descrito un prototipo capaz de proporcionar un sistema para permitir que los componentes intercambien información entre ellos. El modelo ha sido integrado en los componentes que se han de evaluar para obtener nuevas métricas sobre esta característica. Se ha desarrollado un dashboard que permite la interacción sin limitaciones de los usuarios con los componentes, facilitándoles un sistema para conectar componentes, utilizando para ello el sistema previamente descrito. Como conclusión del trabajo, se puede observar la necesidad de integrar los componentes web en un entorno real para poder determinar su calidad. Debido a que la calidad está determinada por los usuarios que consumen los componentes, se ha de contar con su opinión en la cuantificación de la misma.---ABSTRACT---Recently, the web has evolved to the collaboration between professional developers and end users with limited knowledge to create web content. Although both solutions are correct and functional, the differences in the quality between them can be appreciable. This feature is shown clearly when the web components are analyzed. The work is composed of the development of a virtual environment which is able to pick the quality measures of the components, based on the interaction between these components and the user. The measures are the starting point to decide the quality, and improve them with the rated measures. The measures selection is done through a study of the main features of a component. This selection can be analyzed. In order to create the website, a prototype has been specified to provide a system in which the components can be trade information between them. The interconnection model has been integrated in the components to evaluate. A dashboard has been developed to allow users interacting with the components without rules, making them possible connecting components through the model. The main conclusion of the work is the necessity of integrating web components in a real environment to decide their quality. Due to the fact that the quality is measured in terms of the rate of the users, it is a must to give them the main roles in the establishment of that quality.
Estudio de patrones de interacción entre los estudiantes y la Plataforma de Tele-Enseñanza en la UPM
Resumo:
Vivimos en una sociedad en la que la información ha adquirido una vital importancia. El uso de Internet y el desarrollo de nuevos sistemas de la información han generado un ferviente interés tanto de empresas como de instituciones en la búsqueda de nuevos patrones que les proporcione la clave del éxito. La Analítica de Negocio reúne un conjunto de herramientas, estrategias y técnicas orientadas a la explotación de la información con el objetivo de crear conocimiento útil dentro de un marco de trabajo y facilitar la optimización de los recursos tanto de empresas como de instituciones. El presente proyecto se enmarca en lo que se conoce como Gestión Educativa. Se aplicará una arquitectura y modelo de trabajo similar a lo que se ha venido haciendo en los últimos años en el entorno empresarial con la Inteligencia de Negocio. Con esta variante, se pretende mejorar la calidad de la enseñanza, agilizar las decisiones dentro de la institución académica, fortalecer las capacidades del cuerpo docente y en definitiva favorecer el aprendizaje del alumnado. Para lograr el objetivo se ha decidido seguir las etapas del Knowledge Discovery in Databases (KDD), una de las metodologías más conocidas dentro de la Inteligencia de Negocio, que describe el procedimiento que va desde la selección de la información y su carga en sistemas de almacenamiento, hasta la aplicación de técnicas de minería de datos para la obtención nuevo conocimiento. Los estudios se realizan a partir de la información de la activad de los usuarios dentro la plataforma de Tele-Enseñanza de la Universidad Politécnica de Madrid (Moodle). Se desarrollan trabajos de extracción y preprocesado de la base de datos en crudo y se aplican técnicas de minería de datos. En la aplicación de técnicas de minería de datos, uno de los factores más importantes a tener en cuenta es el tipo de información que se va a tratar. Por este motivo, se trabaja con la Minería de Datos Educativa, en inglés, Educational Data Mining (EDM) que consiste en la aplicación de técnicas de minería optimizadas para la información que se genera en entornos educativos. Dentro de las posibilidades que ofrece el EDM, se ha decidido centrar los estudios en lo que se conoce como analítica predictiva. El objetivo fundamental es conocer la influencia que tienen las interacciones alumno-plataforma en las calificaciones finales y descubrir nuevas reglas que describan comportamientos que faciliten al profesorado discriminar si un estudiante va a aprobar o suspender la asignatura, de tal forma que se puedan tomar medidas que mejoren su rendimiento. Toda la información tratada en el presente proyecto ha sido previamente anonimizada para evitar cualquier tipo de intromisión que atente contra la privacidad de los elementos participantes en el estudio. ABSTRACT. We live in a society dominated by data. The use of the Internet accompanied by developments in information systems has generated a sustained interest among companies and institutions to discover new patterns to succeed in their business ventures. Business Analytics (BA) combines tools, strategies and techniques focused on exploiting the available information, to optimize resources and create useful insight. The current project is framed under Educational Management. A Business Intelligence (BI) architecture and business models taught up to date will be applied with the aim to accelerate the decision-making in academic institutions, strengthen teacher´s skills and ultimately improve the quality of teaching and learning. The best way to achieve this is to follow the Knowledge Discovery in Databases (KDD), one of the best-known methodologies in B.I. This process describes data preparation, selection, and cleansing through to the application of purely Data Mining Techniques in order to incorporate prior knowledge on data sets and interpret accurate solutions from the observed results. The studies will be performed using the information extracted from the Universidad Politécnica de Madrid Learning Management System (LMS), Moodle. The stored data is based on the user-platform interaction. The raw data will be extracted and pre-processed and afterwards, Data Mining Techniques will be applied. One of the crucial factors in the application of Data Mining Techniques is the kind of information that will be processed. For this reason, a new Data Mining perspective will be taken, called Educational Data Mining (EDM). EDM consists of the application of Data Mining Techniques but optimized for the raw data generated by the educational environment. Within EDM, we have decided to drive our research on what is called Predictive Analysis. The main purpose is to understand the influence of the user-platform interactions in the final grades of students and discover new patterns that explain their behaviours. This could allow teachers to intervene ahead of a student passing or failing, in such a way an action could be taken to improve the student performance. All the information processed has been previously anonymized to avoid the invasion of privacy.
Resumo:
A cross-sectional survey was made in 56 exceptionally healthy males, ranging in age from 20 to 84 years. Measurements were made of selected steroidal components and peptidic hormones in blood serum, and cognitive and physical tests were performed. Of those blood serum variables that gave highly significant negative correlations with age (r > −0.6), bioavailable testosterone (BT), dehydroepiandrosterone sulfate (DHEAS), and the ratio of insulin-like growth factor 1 (IGF-1) to growth hormone (GH) showed a stepwise pattern of age-related changes most closely resembling those of the age steps themselves. Of these, BT correlated best with significantly age-correlated cognitive and physical measures. Because DHEAS correlated well with BT and considerably less well than BT with the cognitive and physical measures, it seems likely that BT and/or substances to which BT gives rise in tissues play a more direct role in whatever processes are rate-limiting in the functions measured and that DHEAS relates more indirectly to these functions. The high correlation of IGF-1/GH with age, its relatively low correlation with BT, and the patterns of correlations of IGF-1/GH and BT with significantly age-correlated cognitive and physical measures suggest that the GH–IGF-1 axis and BT play independent roles in affecting these functions. Serial determinations made after oral ingestion of pregnenolone and data from the literature suggest there is interdependence of steroid metabolic systems with those operational in control of interrelations in the GH–IGF-1 axis. Longitudinal concurrent measurements of serum levels of BT, DHEAS, and IGF-1/GH together with detailed studies of their correlations with age-correlated functional measures may be useful in detecting early age-related dysregulations and may be helpful in devising ameliorative approaches.
Resumo:
The conditioning of cocaine's subjective actions with environmental stimuli may be a critical factor in long-lasting relapse risk associated with cocaine addiction. To study the significance of learning factors in persistent addictive behavior as well as the neurobiological basis of this phenomenon, rats were trained to associate discriminative stimuli (SD) with the availability of i.v. cocaine vs. nonrewarding saline solution, and then placed on extinction conditions during which the i.v. solutions and SDs were withheld. The effects of reexposure to the SD on the recovery of responding at the previously cocaine-paired lever and on Fos protein expression then were determined in two groups. One group was tested immediately after extinction, whereas rats in the second group were confined to their home cages for an additional 4 months before testing. In both groups, the cocaine SD, but not the non-reward SD, elicited strong recovery of responding and increased Fos immunoreactivity in the basolateral amygdala and medial prefrontal cortex (areas Cg1/Cg3). The response reinstatement and Fos expression induced by the cocaine SD were both reversed by selective dopamine D1 receptor antagonists. The undiminished efficacy of the cocaine SD to elicit drug-seeking behavior after 4 months of abstinence parallels the long-lasting nature of conditioned cue reactivity and cue-induced cocaine craving in humans, and confirms a significant role of learning factors in the long-lasting addictive potential of cocaine. Moreover, the results implicate D1-dependent neural mechanisms within the medial prefrontal cortex and basolateral amygdala as substrates for cocaine-seeking behavior elicited by cocaine-predictive environmental stimuli.
Resumo:
Herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) viral-directed enzyme prodrug gene therapy causes potent, tumor-selective cytotoxicity in animal models in which HSV-tk gene transduction is limited to a minority of tumor cells. The passage of toxic molecules from HSV-tk+ cells to neighboring HSV-tk- cells during GCV therapy is one mechanism that may account for this "bystander" cytotoxicity. To investigate whether gap junction-mediated intercellular coupling could mediate this bystander effect, we used a flow cytometry assay to quantitate the extent of heterocellular coupling between HSV-tk+ murine fibroblasts and both rodent and human tumor cell lines. Bystander tumor cytotoxicity during GCV treatment in a coculture assay was highly correlated (P < 0.001) with the extent of gap junction-mediated coupling. These findings show that gap junction-mediated intercellular coupling contributes to the in vitro bystander effect during HSV-tk/GCV therapy and that retroviral transduction of tumor cells is not required for bystander cytotoxicity.
Resumo:
O mercado consumidor passou por diversas transformações ao longo do tempo devido principalmente à evolução tecnológica. A evolução tecnológica proporcionou ao consumidor a possibilidade de escolher por produtos e marcas, e permite a oportunidade de colaborar e influenciar a opinião de outros consumidores através do compartilhamento de experiências, principalmente através da utilização de plataformas digitais. O CRM (gerenciamento do relacionamento com o consumidor) é a forma utilizada pelas empresas para conhecerem o consumidor e criar um relacionamento satisfatório entre empresa e consumidor. Esse relacionamento tem o intuito de satisfazer e fidelizar o consumidor, evitando que ele deixe de consumir a marca e evitando que ele influencie negativamente outros consumidores. O e-CRM é o gerenciamento eletrônico do relacionamento com o consumidor, que possui todas as tradicionais características do CRM, porém com o incremento do ambiente digital. O ambiente digital diminuiu a distância entre pessoas e empresas e se tornou um meio colaborativo de baixo custo de interação com o consumidor. Por outro lado, este é um meio onde o consumidor deixa de ser passivo e se torna ativo, o que o torna capaz de influenciar não só um pequeno grupo de amigos, mas toda uma rede de consumidores. A digital analytics é a medição, coleta, análise e elaboração de relatórios de dados digitais para os propósitos de entendimento e otimização da performance em negócios. A utilização de dados digitais auxilia no desenvolvimento do e-CRM através da compreensão do comportamento do consumidor em um ambiente onde o consumidor é ativo. O ambiente digital permite um conhecimento mais detalhado dos consumidores, baseado não somente nos hábitos de compra, mas também nos interesses e interações. Este estudo tem como objetivo principal compreender como as empresas aplicam os conceitos do e-CRM em suas estratégias de negócios, compreendendo de que forma a digital analytics contribui para o desenvolvimento do e-CRM, e compreendendo como os fatores críticos de sucesso (humano, tecnológico e estratégico) impactam na implantação e desenvolvimento do e-CRM. Quatro empresas de diferentes segmentos foram estudadas através da aplicação de estudo de caso. As empresas buscam cada vez mais explorar as estratégias de e-CRM no ambiente digital, porém existem limitações identificadas devido à captação, armazenamento e análise de informações multicanais, principalmente considerando os canais digitais. Outros fatores como o apoio da alta direção e a compreensão de funcionários para lidar com estratégias focadas no consumidor único também foram identificados neste estudo. O estudo foi capaz de identificar as informações mais relevantes para a geração de estratégias de gerenciamento eletrônico do relacionamento com o consumidor e identificou os aspectos mais relevantes dos fatores críticos de sucesso.
Resumo:
Although the study of factors affecting career success has shown connections between biographical and other aspects related to ability, knowledge and personality, few studies have examined the relationship be-tween emotional intelligence and professional success at the initial career stage. When these studies were carried out, the results showed significant relationships between the dimensions of emotional intelligence (emotional self-awareness, self-regulation, social awareness or social skills) and the level of professional competence. In this paper, we analyze the relationship between perceived emotional intelligence, measured by the Trait Meta-Mood Scale (TMMS-24) questionnaire, general intelligence assessed by the Cattell factor "g" test, scale 3, and extrinsic indicators of career success, in a sample of 130 graduates at the beginning of their careers. Results from hierarchical regression analysis indicate that emotional intelligence makes a specific contribution to the prediction of salary, after controlling the general intelligence effect. The perceived emotional intelligence dimensions of TMMS repair, TMMS attention and sex show a higher correlation and make a greater contribution to professional success than general intelligence. The implications of these results for the development of socio-emotional skills among University graduates are discussed.
Resumo:
Two predictive models are developed in this article: the first is designed to predict people's attitudes to alcoholic drinks, while the second sets out to predict the use of alcohol in relation to selected individual values. University students (N = 1,500) were recruited through stratified sampling based on sex and academic discipline. The questionnaire used obtained information on participants' alcohol use, attitudes and personal values. The results show that the attitudes model correctly classifies 76.3% of cases. Likewise, the model for level of alcohol use correctly classifies 82% of cases. According to our results, we can conclude that there are a series of individual values that influence drinking and attitudes to alcohol use, which therefore provides us with a potentially powerful instrument for developing preventive intervention programs.