979 resultados para porphyrin, ferrocene, quinonene, energy transfer, electron transfer
Resumo:
Major histocompatibility complex (MHC) class II molecules displayed clustered patterns at the surfaces of T (HUT-102B2) and B (JY) lymphoma cells characterized by interreceptor distances in the micrometer range as detected by scanning force microscopy of immunogold-labeled antigens. Electron microscopy revealed that a fraction of the MHC class II molecules was also heteroclustered with MHC class I antigens at the same hierarchical level as described by the scanning force microscopy data, after specifically and sequentially labeling the antigens with 30- and 15-nm immunogold beads. On JY cells the estimated fraction of co-clustered HLA II was 0.61, whereas that of the HLA I was 0.24. Clusterization of the antigens was detected by the deviation of their spatial distribution from the Poissonian distribution representing the random case. Fluorescence resonance energy transfer measurements also confirmed partial co-clustering of the HLA class I and II molecules at another hierarchical level characterized by the 2- to 10-nm Förster distance range and providing fine details of the molecular organization of receptors. The larger-scale topological organization of the MHC class I and II antigens may reflect underlying membrane lipid domains and may fulfill significant functions in cell-to-cell contacts and signal transduction.
Resumo:
Carotenoids are important biomolecules that are ubiquitous in nature and find widespread application in medicine. In photosynthesis, they have a large role in light harvesting (LH) and photoprotection. They exert their LH function by donating their excited singlet state to nearby (bacterio)chlorophyll molecules. In photosynthetic bacteria, the efficiency of this energy transfer process can be as low as 30%. Here, we present evidence that an unusual pathway of excited state relaxation in carotenoids underlies this poor LH function, by which carotenoid triplet states are generated directly from carotenoid singlet states. This pathway, operative on a femtosecond and picosecond timescale, involves an intermediate state, which we identify as a new, hitherto uncharacterized carotenoid singlet excited state. In LH complex-bound carotenoids, this state is the precursor on the reaction pathway to the triplet state, whereas in extracted carotenoids in solution, this state returns to the singlet ground state without forming any triplets. We discuss the possible identity of this excited state and argue that fission of the singlet state into a pair of triplet states on individual carotenoid molecules constitutes the mechanism by which the triplets are generated. This is, to our knowledge, the first ever direct observation of a singlet-to-triplet conversion process on an ultrafast timescale in a photosynthetic antenna.
Resumo:
The G-protein activator mastoparan (MP) was found to elicit the hypersensitive response (HR) in isolated Asparagus sprengeri mesophyll cells at micromolar concentrations. The HR was characterized by cell death, extracellular alkalinization, and an oxidative burst, indicated by the reduction of molecular O2 to O2⋅−. To our knowledge, this study was the first to monitor photosynthesis during the HR. MP had rapid and dramatic effects on photosynthetic electron transport and excitation energy transfer as determined by variable chlorophyll a fluorescence measurements. A large increase in nonphotochemical quenching of chlorophyll a fluorescence accompanied the initial stages of the oxidative burst. The minimal level of fluorescence was also quenched, which suggests the origin of this nonphotochemical quenching to be a decrease in the antenna size of photosystem II. In contrast, photochemical quenching of fluorescence decreased dramatically during the latter stages of the oxidative burst, indicating a somewhat slower inhibition of photosystem II electron transport. The net consumption of O2 and the initial rate of O2 uptake, elicited by MP, were higher in the light than in the dark. These data indicate that light enhances the oxidative burst and suggest a complex relationship between photosynthesis and the HR.
Resumo:
The heart of oxygenic photosynthesis is photosystem II (PSII), a multisubunit protein complex that uses solar energy to drive the splitting of water and production of molecular oxygen. The effectiveness of the photochemical reaction center of PSII depends on the efficient transfer of excitation energy from the surrounding antenna chlorophylls. A kinetic model for PSII, based on the x-ray crystal structure coordinates of 37 antenna and reaction center pigment molecules, allows us to map the major energy transfer routes from the antenna chlorophylls to the reaction center chromophores. The model shows that energy transfer to the reaction center is slow compared with the rate of primary electron transport and depends on a few bridging chlorophyll molecules. This unexpected energetic isolation of the reaction center in PSII is similar to that found in the bacterial photosystem, conflicts with the established view of the photophysics of PSII, and may be a functional requirement for primary photochemistry in photosynthesis. In addition, the model predicts a value for the intrinsic photochemical rate constant that is 4 times that found in bacterial reaction centers.
Resumo:
Hereditary deficiency of factor IXa (fIXa), a key enzyme in blood coagulation, causes hemophilia B, a severe X chromosome-linked bleeding disorder afflicting 1 in 30,000 males; clinical studies have identified nearly 500 deleterious variants. The x-ray structure of porcine fIXa described here shows the atomic origins of the disease, while the spatial distribution of mutation sites suggests a structural model for factor X activation by phospholipid-bound fIXa and cofactor VIIIa. The 3.0-A-resolution diffraction data clearly show the structures of the serine proteinase module and the two preceding epidermal growth factor (EGF)-like modules; the N-terminal Gla module is partially disordered. The catalytic module, with covalent inhibitor D-Phe-1I-Pro-2I-Arg-3I chloromethyl ketone, most closely resembles fXa but differs significantly at several positions. Particularly noteworthy is the strained conformation of Glu-388, a residue strictly conserved in known fIXa sequences but conserved as Gly among other trypsin-like serine proteinases. Flexibility apparent in electron density together with modeling studies suggests that this may cause incomplete active site formation, even after zymogen, and hence the low catalytic activity of fIXa. The principal axes of the oblong EGF-like domains define an angle of 110 degrees, stabilized by a strictly conserved and fIX-specific interdomain salt bridge. The disorder of the Gla module, whose hydrophobic helix is apparent in electron density, can be attributed to the absence of calcium in the crystals; we have modeled the Gla module in its calcium form by using prothrombin fragment 1. The arched module arrangement agrees with fluorescence energy transfer experiments. Most hemophilic mutation sites of surface fIX residues occur on the concave surface of the bent molecule and suggest a plausible model for the membrane-bound ternary fIXa-FVIIIa-fX complex structure: fIXa and an equivalently arranged fX arch across an underlying fVIIIa subdomain from opposite sides; the stabilizing fVIIIa interactions force the catalytic modules together, completing fIXa active site formation and catalytic enhancement.
Resumo:
In TJ-II stellarator plasmas, in the electron cyclotron heating regime, an increase in the ion temperature is observed, synchronized with that of the electron temperature, during the transition to the core electron-root confinement (CERC) regime. This rise in ion temperature should be attributed to the joint action of the electron–ion energy transfer (which changes slightly during the CERC formation) and an enhancement of the ion confinement. This improvement must be related to the increase in the positive electric field in the core region. In this paper, we confirm this hypothesis by estimating the ion collisional transport in TJ-II under the physical conditions established before and after the transition to CERC. We calculate a large number of ion orbits in the guiding-centre approximation considering the collisions with a background plasma composed of electrons and ions. The ion temperature profile and the thermal flux are calculated in a self-consistent way, so that the change in the ion heat transport can be assessed.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The emission from two photoactive 14-membered macrocyclic ligands, 6-((naphthalen-1-ylmethyl)-amino)trans-6,13-dimethyl- 13-amino- 1,4,8,11 -tetraaza-cyclotetradecane (L-1) and 6-((anthracen-9-ylmethyl)-amino)trans-6,13 -dimethyl - 13 -amino- 1,4,8, 1 1-tetraaza-cyclotetradecane (L-2) is strongly quenched by a photoinduced electron transfer (PET) mechanism involving amine lone pairs as electron donors. Time-correlated single photon counting (TCSPC), multiplex transient grating (TG), and fluorescence upconversion (FU) measurements were performed to characterize this quenching mechanism. Upon complexation with the redox inactive metal ion, Zn(II), the emission of the ligands is dramatically altered, with a significant increase in the fluorescence quantum yields due to coordination-induced deactivation of the macrocyclic amine lone pair electron donors. For [ZnL2](2+), the substituted exocyclic amine nitrogen, which is not coordinated to the metal ion, does not quench the fluorescence due to an inductive effect of the proximal divalent metal ion that raises the ionization potential. However, for [ZnL1](2+), the naphthalene chromophore is a sufficiently strong excited-state oxidant for PET quenching to occur.
Resumo:
An investigation has been undertaken into the effects of various radiations on commercially made Al-SiO2-Si Capacitors (MOSCs). Detailed studies of the electrical and physical nature of such devices have been used to characterise both virgin and irradiated devices. In particular, an investigation of the nature and causes of dielectric breakdown in MOSCs has revealed that intrinsic breakdown is a two-stage process dominated by charge injection in a pre-breakdown stage; this is associated with localised high-field injection of carriers from the semiconductor substrate to interfacial and bulk charge traps which, it is proposed, leads to the formation of conducting channels through the dielectric with breakdown occurring as a result of the dissipation of the conduction band energy. A study of radiation-induced dielectric breakdown has revealed the possibility of anomalous hot-electron injection to an excess of bulk oxide traps in the ionization channel produced by very heavily ionizing radiation, which leads to intrinsic breakdown in high-field stressed devices. These findings are interpreted in terms of a modification to the model for radiation-induced dielectric breakdown based upon the primary dependence of breakdown on charge injection rather than high-field mechanisms. The results of a detailed investigation of charge trapping and interface state generation in such MOSCs due to various radiations has revealed evidence of neutron induced interface states, and of the generation of positive oxide charge in devices due to all of the radiations tested. In particular, the greater the linear energy transfer of the radiation, the greater the magnitude of charge trapped in the oxide and the greater the number of interface states generated. These findings are interpreted in terms of Si-H and Si-OH bond-breaking at the Si-SiO2 interface which is enhanced by charge carrier transfer to the interface and by anomalous charge injection to compensate for the excess of charge carriers created by the radiation.
Resumo:
The main goal of this dissertation was to study two- and three-nucleon Short Range Correlations (SRCs) in high energy three-body breakup of 3He nucleus in 3He(e, e'NN) N reaction. SRCs are characterized by quantum fluctuations in nuclei during which constituent nucleons partially overlap with each other. ^ A theoretical framework is developed within the Generalized Eikonal Approximation (GEA) which upgrades existing medium-energy methods that are inapplicable for high momentum and energy transfer reactions. High momentum and energy transfer is required to provide sufficient resolution for probing SRCs. GEA is a covariant theory which is formulated through the effective Feynman diagrammatic rules. It allows self-consistent calculation of single and double re-scatterings amplitudes which are present in three-body breakup processes. The calculations were carried out in detail and the analytical result for the differential cross section of 3He(e, e'NN)N reaction was derived in a form applicable for programming and numerical calculations. The corresponding computer code has been developed and the results of computation were compared to the published experimental data, showing satisfactory agreement for a wide range of values of missing momenta. ^ In addition to the high energy approximation this study exploited the exclusive nature of the process under investigation to gain more information about the SRCs. The description of the exclusive 3He( e, e'NN)N reaction has been done using the formalism of the nuclear decay function, which is a practically unexplored quantity and is related to the conventional spectral function through the integration of the phase space of the recoil nucleons. Detailed investigation showed that the decay function clearly exhibits the main features of two- and three-nucleon correlations. Four highly practical types of SRCs in 3He nucleus were discussed in great detail for different orders of the final state re-interactions using the decay function as an unique identifying tool. ^ The overall conclusion in this dissertation suggests that the investigation of the decay function opens up a completely new venue in studies of short range nuclear properties. ^
Resumo:
The main goal of this dissertation was to study two- and three-nucleon Short Range Correlations (SRCs) in high energy three-body breakup of 3He nucleus in 3He(e, e'NN)N reaction. SRCs are characterized by quantum fluctuations in nuclei during which constituent nucleons partially overlap with each other. A theoretical framework is developed within the Generalized Eikonal Approximation (GEA) which upgrades existing medium-energy methods that are inapplicable for high momentum and energy transfer reactions. High momentum and energy transfer is required to provide sufficient resolution for probing SRCs. GEA is a covariant theory which is formulated through the effective Feynman diagrammatic rules. It allows self-consistent calculation of single and double re-scatterings amplitudes which are present in three-body breakup processes. The calculations were carried out in detail and the analytical result for the differential cross section of 3He(e, e'NN)Nreaction was derived in a form applicable for programming and numerical calculations. The corresponding computer code has been developed and the results of computation were compared to the published experimental data, showing satisfactory agreement for a wide range of values of missing momenta. In addition to the high energy approximation this study exploited the exclusive nature of the process under investigation to gain more information about the SRCs. The description of the exclusive 3He(e, e'NN)N reaction has been done using the formalism of the nuclear decay function, which is a practically unexplored quantity and is related to the conventional spectral function through the integration of the phase space of the recoil nucleons. Detailed investigation showed that the decay function clearly exhibits the main features of two- and three-nucleon correlations. Four highly practical types of SRCs in 3He nucleus were discussed in great detail for different orders of the final state re-interactions using the decay function as an unique identifying tool. The overall conclusion in this dissertation suggests that the investigation of the decay function opens up a completely new venue in studies of short range nuclear properties.
Resumo:
This paper analyzes the impact of transceiver impairments on outage probability (OP) and throughput of decode-and-forward two-way cognitive relay (TWCR) networks, where the relay is self-powered by harvesting energy from the transmitted signals. We consider two bidirectional relaying protocols namely, multiple access broadcast (MABC) protocol and time division broadcast (TDBC) protocol, as well as, two power transfer policies namely, dual-source (DS) energy transfer and single-fixed-source (SFS) energy transfer. Closed-form expressions for OP and throughput of the network are derived in the context of delay-limited transmission. Numerical results corroborate our analysis, thereby we can quantify the degradation of OP and throughput of TWCR networks due to transceiver hardware impairments. Under the specific parameters, our results indicate that the MABC protocol achieves asymptotically a higher throughput by 0.65 [bits/s/Hz] than the TDBC protocol, while the DS energy transfer scheme offers better performance than the SFS policy for both relaying protocols.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
International audience
Síntese de sensores, funcionalização de nanopartículas e fibras óticas para reconhecimento de aniões
Resumo:
O trabalho descrito nesta dissertação envolve a síntese e caracterização de novos macrociclos tetrapirrólicos e afins com potencial aplicação como quimiossensores de aniões, tanto em solução como quando suportados em diferentes materiais. As porfirinas e ftalocianinas ocupam um lugar de destaque nesta dissertação, pelo que no primeiro capítulo, é feita uma revisão bibliográfica acerca das suas metodologias de síntese bem como das suas principais características e aplicações, nomeadamente como quimiossensores de aniões. No segundo capítulo é discutida a síntese e caracterização dos compostos porfirínicos e ftalocianinicos com grupos amina ou poliamina, posteriormente utilizados como hospedeiros de aniões. Descrevem-se, pormenorizadamente, os métodos de síntese, purificação e caracterização estrutural dos diversos compostos sintetizados. No terceiro capítulo realizaram-se os estudos de complexação com aniões em solução e determinaram-se as respetivas constantes de afinidade. Os compostos sintetizados apresentam capacidade de interagir com diferentes aniões. As porfirinas testadas apresentam elevadas constantes de afinidade para o anião di-hidrogenofosfato, mesmo em soluções aquosas quando testadas com cristais piezoelétricos. No caso das ftalocianinas verificou-se que estas interagem com vários aniões e apresentam propriedades cromogénicas, podendo mesmo distinguir aniões cianeto em soluções contendo água. No quarto capítulo estudou-se a imobilização dos quimiossensores, que demonstraram maior eficácia nos estudos de reconhecimento em solução, em diferentes materiais. Primeiro foi estudada a imobilização dos quimiossensores em nanopartículas de sílica (com e sem núcleo magnético) e testada a sua capacidade como sensor de aniões em solução. Numa segunda parte foi estudada a imobilização em fibras óticas. Estas, além das suas excecionais propriedades físico-químicas, têm a vantagem de poderem ser integradas em diferentes estruturas e/ou equipamentos de análise. Na ultima parte desta dissertação encontra-se a descrição da síntese e caracterização de novos conjugados porfirina-C60-OligoDNA com potencial aplicação em transferência eletrónica. Foram sintetizados e caracterizados novos compostos porfirina-OligoDNA e C60-OligoDNA. Esta parte do trabalho foi realizada no “Institute of Advanced Energy” na Universidade de Quioto, Japão.