970 resultados para pollution effects
Resumo:
Monotony has been identified as a contributing factor to road crashes. Drivers’ ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks, such as driving on Australian rural roads, many of which are monotonous by nature. Highway design in particular attempts to reduce the driver’s task to a merely lane-keeping one. Such a task provides little stimulation and is monotonous, thus affecting the driver’s attention which is no longer directed towards the road. Inattention contributes to crashes, especially for professional drivers. Monotony has been studied mainly from the endogenous perspective (for instance through sleep deprivation) without taking into account the influence of the task itself (repetitiveness) or the surrounding environment. The aim and novelty of this thesis is to develop a methodology (mathematical framework) able to predict driver lapses of vigilance under monotonous environments in real time, using endogenous and exogenous data collected from the driver, the vehicle and the environment. Existing approaches have tended to neglect the specificity of task monotony, leaving the question of the existence of a “monotonous state” unanswered. Furthermore the issue of detecting vigilance decrement before it occurs (predictions) has not been investigated in the literature, let alone in real time. A multidisciplinary approach is necessary to explain how vigilance evolves in monotonous conditions. Such an approach needs to draw on psychology, physiology, road safety, computer science and mathematics. The systemic approach proposed in this study is unique with its predictive dimension and allows us to define, in real time, the impacts of monotony on the driver’s ability to drive. Such methodology is based on mathematical models integrating data available in vehicles to the vigilance state of the driver during a monotonous driving task in various environments. The model integrates different data measuring driver’s endogenous and exogenous factors (related to the driver, the vehicle and the surrounding environment). Electroencephalography (EEG) is used to measure driver vigilance since it has been shown to be the most reliable and real time methodology to assess vigilance level. There are a variety of mathematical models suitable to provide a framework for predictions however, to find the most accurate model, a collection of mathematical models were trained in this thesis and the most reliable was found. The methodology developed in this research is first applied to a theoretically sound measure of sustained attention called Sustained Attention Response to Task (SART) as adapted by Michael (2010), Michael and Meuter (2006, 2007). This experiment induced impairments due to monotony during a vigilance task. Analyses performed in this thesis confirm and extend findings from Michael (2010) that monotony leads to an important vigilance impairment independent of fatigue. This thesis is also the first to show that monotony changes the dynamics of vigilance evolution and tends to create a “monotonous state” characterised by reduced vigilance. Personality traits such as being a low sensation seeker can mitigate this vigilance decrement. It is also evident that lapses in vigilance can be predicted accurately with Bayesian modelling and Neural Networks. This framework was then applied to the driving task by designing a simulated monotonous driving task. The design of such task requires multidisciplinary knowledge and involved psychologist Rebecca Michael. Monotony was varied through both the road design and the road environment variables. This experiment demonstrated that road monotony can lead to driving impairment. Particularly monotonous road scenery was shown to have the most impact compared to monotonous road design. Next, this study identified a variety of surrogate measures that are correlated with vigilance levels obtained from the EEG. Such vigilance states can be predicted with these surrogate measures. This means that vigilance decrement can be detected in a car without the use of an EEG device. Amongst the different mathematical models tested in this thesis, only Neural Networks predicted the vigilance levels accurately. The results of both these experiments provide valuable information about the methodology to predict vigilance decrement. Such an issue is quite complex and requires modelling that can adapt to highly inter-individual differences. Only Neural Networks proved accurate in both studies, suggesting that these models are the most likely to be accurate when used on real roads or for further research on vigilance modelling. This research provides a better understanding of the driving task under monotonous conditions. Results demonstrate that mathematical modelling can be used to determine the driver’s vigilance state when driving using surrogate measures identified during this study. This research has opened up avenues for future research and could result in the development of an in-vehicle device predicting driver vigilance decrement. Such a device could contribute to a reduction in crashes and therefore improve road safety.
Resumo:
This paper aimed to assess the magnitude of sewage pollution in an urban lake in Dhaka, Bangladesh by using Quantitative PCR (qPCR) of sewage-associated Bacteroides HF183 markers. PCR was also used for the quantitative detection of ruminant wastewater-associated CF128 markers along with the enumeration of traditional fecal indicator bacteria, namely, enterococci. The number of enterococci in lake water samples ranged from 1.1 x 104 to 1.9 x 105 CFU/100 ml of water. From the 20 water samples tested, 14 (70%) and 7 (35%) were PCR positive for the HF183 and CF128 markers, respectively. The numbers of the HF183 and CF128 markers in lake water samples were 3.9 x 104 to 6.3 × 107 and 9.3 x 103 to 6.3 x 105 genomic units (GU)/100 ml of water, respectively. The high numbers of enterococci and the HF183 markers indicate sewage pollution and potential health risks to those who use the lake water for non-potable purposes such as bathing and washing clothes. This is the first study that investigated the presence of microbial source tracking (MST) markers in Dhaka, Bangladesh where diarrhoeal diseases is one of the major causes of childhood mortality. The molecular assay as used in this study can provide valuable information on the extent of sewage pollution, thus facilitating the development of robust strategies to minimise potential health risks.
Resumo:
In this study, the host-specificity and -sensitivity of human- and bovine-specific adenoviruses (HS-AVs and BS-AVs) were evaluated by testing wastewater/fecal samples from various animal species in Southeast, Queensland, Australia. The overall specificity and sensitivity of the HS-AVs marker were 1.0 and 0.78, respectively. These figures for the BS-AVs were 1.0 and 0.73, respectively. Twenty environmental water samples were colleted during wet conditions and 20 samples were colleted during dry conditions from the Maroochy Coastal River and tested for the presence of fecal indicator bacteria (FIB), host-specific viral markers, zoonotic bacterial and protozoan pathogens using PCR/qPCR. The concentrations of FIB in water samples collected after wet conditions were generally higher compared to dry conditions. HS-AVs was detected in 20% water samples colleted during wet conditions and whereas BS-AVs was detected in both wet (i.e., 10%) and dry (i.e., 10%) conditions. Both, C. jejuni mapA and Salmonella invA genes were detected in 10% and 10% of samples, respectively collected during dry conditions. The concentrations of Salmonella invA ranged between 3.5 × 102 to 4.3 × 102 genomic copies per 500 ml of water G. lamblia β-giardin gene was detected only in one sample (5%) collected during the dry conditions. Weak or significant correlations were observed between FIB with viral markers and zoonotic pathogens. However, during dry conditions, no significant correlations were observed between FIB concentrations with viral markers and zoonotic pathogens. The prevalence of HS-AVs in samples collected from the study river suggests that the quality of water is affected by human fecal pollution and as well as bovine fecal pollution. The results suggest that HS-AVs and BS-AVs detection using PCR could be a useful tool for the identification of human sourced fecal pollution in coastal waters.