997 resultados para plant taxonomy
Resumo:
The identification of small molecules that affect T cell activation is an important area of research. Three molecules that regulate plant growth and differentiation, but not their structurally similar analogs, were identified to enhance primary mouse CD4(+) T cell activation in conjunction with soluble anti-CD3 stimulation: Indoleacetic acid (natural plant auxin), 1-Napthaleneacetic acid (synthetic plant auxin) and 2,4-Dichlorophenoxyacetic acid (synthetic plant auxin and herbicide). These effects are distinct in comparison to Curcumin, the well known phenolic immunomodulator, which lowers T cell activation. An investigation into the mechanisms of action of the three plant growth regulators revealed a rapid induction of reactive oxygen species (ROS), mainly comprising H2O2 . In addition, these three molecules synergize with soluble anti-CD3 signaling to enhance intracellular Ca2+ concentrations Ca2+](i), leading to greater T cell activation, e.g. induction of CD25 and IL-2. Enhanced production of TNF alpha and IFN gamma by CD4+ T cells is also observed upon plant growth regulator treatment with soluble anti-CD3. Interestingly, maximal IL-2 production and CD4(+) T cell cycle progression are observed upon activation with soluble anti-CD3 and phorbol 12-myristate 13-acetate (PMA), a phorbol ester. Additionally, stimulation with PMA and Ionomcyin (a Ca2+ ionophore), which activates T cells by circumventing the TCR, and plant growth regulators also demonstrated the role of the strength of signal (SOS): T cell cycle progression is enhanced with gentle activation conditions but decreased with strong activation conditions. This study demonstrates the direct effects of three plant growth regulators on CD4(+) T cell activation and cycling. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Chill treatment of potato tubers for 8 days induced mitochondrial O-2 consumption by cyanide-insensitive alternative oxidase (AOX). About half of the total O-2 consumption in such mitochondria was found to be sensitive to salicylhydroxamate (SHAM), a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive O-2 consumption by nearly half, and addition at the end of the reaction released half of the O-2 consumed by AOX, both typical of catalase action on H2O2. This reaffirmed that the product of reduction of O-2 by plant AOX was H2O2 as found earlier and not H2O as reported in some recent reviews.
Resumo:
This dissertation is focused on the taxonomy, phylogeny, and ecology of the vagrant, erratic and allied terricolous and saxicolous species of the genera Aspicilia A. Massal. and Circinaria Link (Megasporaceae), particularly those traditionally referred to as manna lichens . The group has previously been defined on the basis of few morphological characters. The phylogeny of the family Megasporaceae is inferred from the combined dataset of nuLSU and mtSSU sequences. Five genera Aspicilia, Circinaria, Lobothallia, Megaspora, and Sagedia are recognized. Lobothallia is sister of the four other genera, while Aspicilia and Sagedia form the next clade. All these genera have small asci with eight spores. Circinaria is a sister genus of Megaspora, and these two have in common asci with (1 4) 6 8 large spores. Circinaria forms a monophyletic group and sphaerothallioid species form a monophyletic group within Circinaria. The presence of certain morphological characters such as pseudocyphellae, thickness of cortex and medulla layers, as well as ecological differences in sphaerothallioid species distinguish it from some other crustose species, especially those containing aspicilin and characterised by thin cortex and medulla layers, conidium length c. 6 12 µm and absence of pseudocyphellae. If sphaerothallioid species are accepted as a distinct genus, the rest of the Circinaria species would remain as a paraphyletic assemblage. Currently, the genus Circinaria includes all the sphaerothallioid species and its generic position is confirmed and accepted. Thus, it is proposed as a correct generic name also for the manna lichens described originally in other genera. Phylogeny at the species level was studied using nrITS sequence data. Traditionally, morphological characters have been used for the recognition of species. They were re-evaluated in the light of molecular data. Since characters such as vagrant, erratic and crustose growth forms proved to be misleading for the recognition of some species, a combination of several characters (including molecular data) is recommended. Vagrant growth form seems to have evolved several times among the distantly related lineages and even within a single population. The reasons behind the high plasticity in the external morphology of the sphaerothallioid Circinaria remain, however, unknown. Six new species are recognized: Aspicilia tibetica, Circinaria arida, C. digitata nom provis., C. gyrosa nom. provis., C. rogeri nom. provis., and C. rostamii nom. provis. Based on an analysis of nrITS dataset, three new erratic, vagrant and crustose species were also recognized, but these require additional study. The results also reveal that C. elmorei and C. hispida are not monophyletic as currently understood. In addition, 13 new combinations in the genus Circinaria are proposed.
Resumo:
A simple three step procedure was used to purify microsomal NADH-cytochrome b5 (ferricyanide) reductase to homogeneity from the higher plant C. roseus. The microsomal bound reductase was solubilized using zwitterionic detergent-CHAPS. The solubilized reductase was subjected to affinity chromatography on octylamino Sepharose 4B, blue 2-Sepharose CL-6B and NAD+-Agarose. The homogeneous enzyme has an apparent molecular weight of 33,000 as estimated by SDS-PAGE. The purified enzyme catalyzes the reduction of purified cytochrome b5 from C. roseus in the presence of NADH. The reductase also readily transfers electrons from NADH to ferricyanide (Km 56 μM), 2,6-dichlorophenolindophenol (Km 65 μM) and cytochrome Image via cytochrome b5 but not to menadione.
Resumo:
A mutant of Erythrina corallodendron lectin was generated with the aim of enhancing its affinity for N-acetylgalactosamine. A tyrosine residue close to the binding site of the lectin was mutated to a glycine in order to facilitate stronger interactions between the acetamido group of the sugar and the lectin which were prevented by the side chain of the tyrosine in the wild-type lectin. The crystal structures of this Y106G mutant lectin in complex with galactose and N-acetylgalactosamine have been determined. A structural rationale has been provided for the differences in the relative binding affinities of the wild-type and mutant lectins towards the two sugars based on the structures. A hydrogen bond between the O6 atom of the sugars and the variable loop of the carbohydrate-binding site of the lectin is lost in the mutant complexes owing to a conformational change in the loop. This loss is compensated by an additional hydrogen bond that is formed between the acetamido group of the sugar and the mutant lectin in the complex with N-acetylgalactosamine, resulting in a higher affinity of the mutant lectin for N-acetylgalactosamine compared with that for galactose, in contrast to the almost equal affinity of the wild-type lectin for the two sugars. The structure of a complex of the mutant with a citrate ion bound at the carbohydrate-binding site that was obtained while attempting to crystallize the complexes with sugars is also presented.
Resumo:
The title compound, 9,10-dihydro-8,8-dimethyl-2-oxo-2H,8H-benzo[1,2-b:3,4-b']dipyran-9,10-diyl 2-methyl-2-butenoate, C24H26O7, contains a highly planar coumarin nucleus and a substituted dihydropyran ring (C), which has a distorted half-chair conformation, with an 8 alpha,9 beta orientation. The conformation of ring C is further supported by the two angelyloxy (2-methyl-2-butenoyloxy) substituents at positions C9 and C10, which are cis oriented and thus cannot both occupy equatorial positions with respect to the plane of ring C. The conformations of the two angelyloxy substituents are different, as indicated by their endocyclic torsion angles. The most striking of these angles are O1'-C2'-C4'=C6' and O1'-C2'-C4'-C5' [-137.7 (5) and 43.7 (5)degrees, respectively, in the chain at C10 and 155.8 (5) and -24.7 (9)degrees, respectively in the chain at C9]. These variations are due to two intramolecular hydrogen bonds, namely, C16-H161 ... O1' [C16 ... O1' 3.056 (7) Angstrom] and C7''-H7Y ... O3'' [C7'' ... O3'' 2.955 (12) Angstrom]. The methyl substituents, C15 and C16, at position C8 are alpha and beta oriented, respectively. The crystal structure is stabilized by a weak C4-H41 ... O3' hydrogen bond [C4 ... O3' 3.297 (6) Angstrom] between the screw-related molecules.
Resumo:
Fungal endophytes of tropical trees are expected to be exceptionally species rich as a consequence of high tree diversity in the tropics and the purported host restriction among the endophytes. Based on this premise, endophytes have been regarded as a focal group for estimating fungal numbers because their possible hyperdiverse nature would reflect significantly global fungal diversity. We present our consolidated ten-year work on 75 dicotyledonous tree hosts belonging to 33 families and growing in three different types of tropical forests of the NBR in the Western Ghats, southern India. We conclude that endophyte diversity in these forests is limited due to loose host affiliations among endophytes. Some endophytes have a wide host range and colonize taxonomically disparate hosts suggesting adaptations in them to counter a variety of defense chemicals in their hosts. Furthermore, such polyphagous endophytes dominate the endophyte assemblages of different tree hosts. Individual leaves may be densely colonized but only by a few endophyte species. It appears that the environment (the type of forest in this case) has a larger role in determining the endophyte assemblage of a plant host than the taxonomy of the host plant. Thus, different tropical plant communities have to be studied for their endophyte diversity to test the generalization that endophytes are hyperdiverse in the tropics, estimate their true species richness, and use them as a predictor group for more accurate assessment of global fungal diversity.
Resumo:
Monoclonal antibodies have been used as probes to study the architecture of several plant viruses over the past decade. These studies complement the information obtained through X-ray crystallography and help in delineating epitopes on the surface of the virus. The monoclonal antibodies that recognize distinct epitopes also aid in unravelling the mechanisms of assembly/disassembly of virus particles. Group-specific and strain-specific monoclonal antibodies are widely used in the classification of viruses. The significant developments made in this emerging area are reviewed here with specific examples.
Resumo:
Callus induction and morphogenesis from different blackgram explants were tested on MS basal medium supplemented with B5 vitamins, IAA, NAA, IBA, KIN and BAP individually and in combinations. The explants were hypocotyl, epicotyl, axillary bud, cotyledonary node and immature leaf. The optimal levels of the frequency of callus induction was 22.8 mu M of IAA or 16.1 mu M NAA and in combination with 2.2 mu M of BAP. Among the seedling explants, hypocotyl was found to be more efficient in producing callus. Shoots mere induced from callus cultures of hypocotyls, epicotyls, axillary bud, cotyledonary node and immature leaf with varying frequencies in the medium containing KIN (2.3-9.3 mu M) or BAP (2.2-8.8 mu M) and in combination with IAA (2.8 mu M) or NAA (2.6 mu M). Multiple shoots were obtained using cotyledonary node segments. The regenerated shoots rooted best on MS basal medium containing 9.8 mu M IBA. Seventy three per cent of the shoots produced roots, and 80-85% of the plantlets survived under greenhouse condition.