915 resultados para organo-mineral fertilizers
Resumo:
The consumption of bottled mineral water has significantly increased in Brazil so that it is in the interest of public health to determine the parasitological and microbiological status of some brands of Brazilian mineral water available in the town of Campinas, São Paulo, Brazil. For this purpose, detection of protozoa by direct immunofluorescence technique and microbiological parameters were determined for each specimen after membrane filtration. Giardia cysts were not present while cryptosporidial oocysts were detected in two samples. The counts of protozoa varied from 0.2 to 0.5 oocysts/l. The detected level of Pseudomonas aeruginosa and heterotrophic bacteria reflected the level of organic enrichment of the water.
Resumo:
Background: The prevalence of a low bone mineral density (T-score <-1 SD) in postmenopausal women with a fragility fracture may vary from 70% to less than 50%. In one study (Siris ES. Arch Intern Med. 2004;164:1108-12), the prevalence of osteoporosis was very low at 6.4%. The corresponding values in men are rarely reported. Methods: In a nationwide Swiss survey, all consecutive patients aged 50+ presenting with one or more fractures to the emergency ward, were recruited by 8 participating hospitals (University Hospitals: Basel, Bern, and Lausanne; cantonal hospitals: Fribourg, Luzern, and St Gallen; regional hospitals: Estavayer and Riaz) between 2004 and 2006. Diagnostic workup was collected for descriptive analysis. Results: 3667 consecutive patients with a fragility fracture, 2797 women (73.8 ± 11.6 years) and 870 men (70.0 ± 12.1 years), were included. DXA measurement was performed in 1152 (44%) patients. The mean of the lowest T-score values was -2.34 SD in women and -2.16 SD in men. In the 908 women, the prevalence of osteoporosis and osteopenia according to the fracture type was: sacrum (100%, 0%), rib (100%, 0%), thoracic vertebral (78%, 22%), femur trochanter (67%, 26%), pelvis (66%, 32%), lumbar vertebral (63%, 28%), femoral neck (53%, 34%), femur shaft (50%, 50%), proximal humerus (50%, 34%), distal forearm (41%, 45%), tibia proximal (41%, 31%), malleolar lateral (28%, 46%), malleolar median (13%, 47%). The corresponding percentages in the 244 men were: distal forearm (70%, 19%), rib (63%, 11%), pelvis (60%, 20%), malleolar median (60%, 32%), femur trochanter (48%, 31%), thoracic vertebral (47%, 53%), lumbar vertebral (43%, 36%), proximal humerus (40%, 43%), femoral neck (28%, 55%), tibia proximal (26%, 36%), malleolar lateral (18%, 56%). Conclusion: The probability of underlying osteoporosis or osteopenia in men and women aged 50+ who experienced a fragility fracture was beyond 75% in fractures of the sacrum, pelvis, spine, femur, proximal humerus and distal forearm. The medial and lateral malleolar fractures had the lowest predictive value in women, not in men.
Resumo:
CONTEXT: Cirrhosis after viral hepatitis has been identified as a risk factor for osteoporosis in men. However, in postmenopausal women, most studies have evaluated the effect of primary biliary cirrhosis, but little is known about the effect of viral cirrhosis on bone mass [bone mineral density (BMD)] and bone metabolism. OBJECTIVE: Our objective was to assess the effect of viral cirrhosis on BMD and bone metabolism in postmenopausal women. DESIGN: We conducted a cross-sectional descriptive study. SETTING AND PATIENTS: We studied 84 postmenopausal female outpatients with viral cirrhosis and 96 healthy postmenopausal women from the general community. BMD was measured by dual-energy x-ray absorptiometry at lumbar spine (LS) and femoral neck (FN). RESULTS: The percentage with osteoporosis did not significantly differ between patients (LS, 43.1%; FN, 32.2%) and controls (LS, 41.2%; FN, 29.4%), and there was no difference in BMD (z-score) between groups. Serum concentrations of soluble TNF receptors, estradiol, and osteoprotegerin (OPG) were significantly higher in patients vs. controls (P < 0.001, P < 0.05, and P < 0.05, respectively). No significant difference was observed in urinary deoxypyridinoline. Serum OPG levels were positively correlated with soluble TNF receptors (r = 0.35; P < 0.02) and deoxypyridinoline (r = 0.37; P < 0.05). CONCLUSIONS: This study shows that bone mass and bone resorption rates do not differ between postmenopausal women with viral cirrhosis and healthy postmenopausal controls and suggests that viral cirrhosis does not appear to increase the risk of osteoporosis in these women. High serum estradiol and OPG concentrations may contribute to preventing the bone loss associated with viral cirrhosis in postmenopausal women.
Resumo:
INTRODUCTION Massive small bowel resection (MSBR) with a remnant jejunum shorter than 60 cm produces severe water, electrolytes, vitamins and protein-caloric depletion. While waiting for a viable intestinal transplantation, most of MSBR patients depend on total parenteral nutrition (TPN). CLINICAL CASE 32 years old male, with MSBR due to sectioning trauma of the superior mesenteric artery root. First surgical intervention: jejunostomy with small bowel, right colon, and spleen resection. Six months later: jejunocolic anastomosis with 12-cm long jejunum remnant and prophylactic cholecystectomy. NUTRITIONAL INTERVENTION: 1st phase. Hemodynamic stabilization and enteral stimulation (6 months): TPN + enteral nutrition with elemental formula + oral glucohydroelectrolitic solution (OGHS) + 15 g/d of oral glutamine + omeprazol. Clinical course indicators: biochemistry, I/L balance. 2a phase. Digestive adaptation with colonic integration (8 months): replacement of TPN by part-time peripheral PN. Progressive cooked diet complemented with pancreatic poly-enzyme preparation, omeprazol, OGHS, glutamine, elemental formula. Clinical course indicators: biochemistry, diuresis, weight and feces. 3a phase. Auto-sufficiency without parenteral dependence: fragmented free oral diet supplemented with pancreatic poly-enzyme preparation, mineralized beverages, enteral formula supplement, Ca and Mg oral supplements, oral multivitamin and mineral preparation, monthly IM vitamin B12. Current situation actual (52 months): slight ponderal gain, diuresis > liter/day, 2-3 normal feces, no clinical signs of any deficiency and normal blood levels of micronutrients. CONCLUSION It may be possible to withdraw from PN in MSBR considering, as in this case, favorable age and etiology and early implementation of an appropriate protocol of remnant adaptation.
Resumo:
Background: Specific physical loading leads to enhanced bone development during childhood. A general physical activity program mimicking a real-life situation was successful at increasing general physical health in children. Yet, it is not clear whether it can equally increase bone mineral mass. We performed a cluster-randomized controlled trial in children of both gender and different pubertal stages to determine whether a school-based physical activity (PA) program during one school-year influences bone mineral content (BMC) and density (BMD), irrespective of gender.Methods: Twenty-eight 1st and 5th grade (6-7 and 11-12 year-old) classes were cluster randomized to an intervention (INT, 16 classes, n = 297) and control (CON; 12 classes, n = 205) group. The intervention consisted of a multi-component PA intervention including daily physical education with at least 10 min of jumping or strength training exercises of various intensities. Measurements included anthropometry, and BMC and BMD of total body, femoral neck, total hip and lumbar spine using dual-energy X-ray absorptiometry (DXA). PA was assessed by accelerometers and Tanner stages by questionnaires. Analyses were performed by a regression model adjusted for gender, baseline height and weight, baseline PA, post-intervention pubertal stage, baseline BMC, and cluster.Results: 275 (72%) of 380 children who initially agreed to have DXA measurements had also post-intervention DXA and PA data. Mean age of prepubertal and pubertal children at baseline was 8.7 +/- 2.1 and 11.1 +/- 0.6 years, respectively. Compared to CON, children in INT showed statistically significant increases in BMC of total body, femoral neck, and lumbar spine by 5.5%, 5.4% and 4.7% (all p < 0.05), respectively, and BMD of total body and lumbar spine by 8.4% and 7.3% (both p < 0.01), respectively. There was no gender*group, but a pubertal stage*group interaction consistently favoring prepubertal children.Conclusion: A general school-based PA intervention can increase bone health in elementary school children of both genders, particularly before puberty. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
During the second half of the nineteenth century a major mineral water bottling industry appeared in Catalonia which vigorously lasted until the first third of the 20th century. The fact that the industry appeared in Catalonia and in other parts of Europe and the United States almost at the same time and had not existed before can be explained by a series of factors which coincided in time. This situation encouraged producers to pack, transport and sell bottled water from their respective sources. Among these factors there is the rise of hygienism, very influential in Catalonia, the declining water quality due to industrialization, the increase in population density, the improvement in transport, the emergence of thermal tourism or the invention of better containers used to store water. This project aims to explain thoroughly all the mentioned factors, and to give some light to why, when and how the Catalan bottled water industry appeared.
Resumo:
A newly identified cytokine, osteoprotegerin (OPG) appears to be involved in the regulation of bone remodeling. In vitro studies suggest that OPG, a soluble member of the TNF receptor family of proteins, inhibits osteoclastogenesis by interrupting the intercellular signaling between osteoblastic stromal cells and osteoclast progenitors. As patients with chronic renal failure (CRF) often have renal osteodystrophy (ROD), we investigated the role of osteoprotegerin (OPG) in ROD, and investigated whether there was any relationship between serum OPG, intact parathyroid (PTH) (iPTH), vitamin D, and trabecular bone. Serum OPG combined with iPTH might be a useful tool in the noninvasive diagnosis of ROD, at least in cases in which the range of PTH values compromises reliable diagnosis. Thirty-six patients on maintenance hemodiafiltration (HDF) and a control group of 36 age and sex matched healthy subjects with no known metabolic bone disease were studied. The following assays were made on serum: iPTH, osteocalcin (BGP), bone alkaline phosphatase, 25(OH)-cholecalciferol, calcium, phosphate, OPG, IGF-1, estradiol, and free testosterone. Serum Ca++, P, B-ALP, BGP, IGF-1, iPTH, and OPG levels were significantly higher in HDF patients than in controls, while DXA measurements and quantitative ultrasound (QUS) parameters were significantly lower. On grouping patients according to their mean OPG levels, we observed significantly lower serum IGF-1, vitamin D3 concentrations, and lumbar spine and hip bone mineral density in the high OPG groups. No correlation was found between OPG and bone turnover markers, whereas a negative correlation was found between serum OPG and IGF-1 levels (r=-0.64, p=0.032). Serum iPTH concentrations were positively correlated with bone alkaline phosphatase (B-ALP) (r=0.69, p=0.038) and BGP (r=0.92, p<0.001). The findings made suggest that an increase in OPG levels may be a compensatory response to elevated bone loss. The low bone mineral density (BMD) levels found in the high OPG group might have been due to the significant decrease in serum IGF-1 and vitamin D3 observed. In conclusion, the findings made in the present study demonstrate that increased OPG in hemodiafiltration patients is only partly due to decreased renal clearance. As it may partly reflect a compensatory response to increased bone loss, this parameter might be helpful in the identification of patients with a marked reduction in trabecular BMD.
Resumo:
INTRODUCTION: Alterations in lipid metabolism and bone mineral metabolism disturbances are common disorders among renal transplant patients, contributing to the apparition of oxidative metabolic and cardiovascular diseases that threaten the integrity of the graft. AIMS: Describe and observe the evolution of alterations in bone mineral density (BMD) and lipid abnormalities in a population of kidney transplant patients. MATERIAL AND METHOD: The samples consisted of 119 kidney transplant patients of both sexes, measurements were performed pretransplant and posttransplant for five years of biochemical parameters, anthropometric measurements and measurement of bone mineral density at the lumbar spine, femur and radioulnar. RESULTS: During the five years after transplantation a significant increase in biochemical parameters, BMI, dyslipidemia, diabetes and hypertension occurs. At six months there is a high percentage of patients with pathologic BMD increase by 4.1% per year of transplantation. CONCLUSIONS: After kidney transplantation, a large increase of hyperlipidemia associated with a characteristic pattern of altered lipid with elevated total cholesterol, low density lipoprotein, high density lipoprotein, and the resulting increase in triglycerides, occurs despite statin therapy, leading to an increase in risk factors for diabetes, hypertension, diseases and cardiovascualres further loss of bone mass which carries a high risk of serious fractures occurs, threatening kidney graft and quality of life of patients.
Resumo:
Seasonal trends in littertall and potential mineral return were studied in two cork-oak forest sites in the northeastern Iberian peninsula. The estimated average litter production was 3.9.M- gy.e1ahar for one site and 4.6 .M- gy.e1ahar for the other; these figures are similar to those reported for holm-oak (Quercus ilex) forests in the same area. Seasonal litterfall patterns were typical of Mediterranean forest ecosystems. Leaves accounted for 46 to 78% of the total dry matter. Their annual weighted-average mineral composition was low in macronutrients (N 8-9; K 4-5; Mg 0.8-1.3; Ca 9-10 and P 0.4-1 m-)g.1g and relatively high in micronutrients such as Mn (2-2.2 m-)g.1g or Fe (0.3-0.4 m)-g..1g Minimum N and P concentrations were found during the growth period. Estimates of potential mineral return for an annual cycle were N 38-52, P 2.1-5.2, K 20-28, Ca 44-53 and Mg 5.4-5.0 k-,g.1ha depending on the site biomass and fertility
Resumo:
Introduction: The beneficial effect of physical exercise on bone mineral density (BMD) is at least partly explained by the forces exerted directly on the bones. Male runners present generally higher BMD than sedentary individuals. We postulated that the proximal tibia BMD is related to the running distance as well as to the magnitude of the shocks (while running) in male runners. Methods: A prospective study (three yearly measurements) included 81 healthy male subjects: 16 sedentary lean subjects and three groups of runners (5-30 km/week, n=19; 30-50 km/week, n=29; 50-100 km/week, n=17). Several measurements were performed at the proximal tibia level: volumetric BMD (vBMD), cortical index (CI) i.e. an index of cortical bone thickness and peak accelerations (an index of shocks during heel strike) while running (measured by a 3-D accelerometer). A general linear model assessed the prediction of vBMD or CI by a) simple effects (running distance, peak accelerations, time) and b) interactions (for instance if vBMD prediction by peak acceleration depends on running distance). Results: CI and vBMD a) increase with running distance to reach a plateau over 30 km/wk, b) are positively associated with peak accelerations over 30 km/week. Discussion: Running may be associated with high peak accelerations in order to have beneficial effects on BMD. More important strains are needed to be associated with the same increase in BMD during running sessions of short duration than those of long duration. Conclusion: CI and vBMD are associated with the magnitude of the shocks during heel strike in runners. Key words: Bone mineral density, strains, physical exercise, running distance.
Resumo:
The use of bone mineral density (BMD) for fracture discrimination may be improved by considering bone microarchitecture. Texture parameters such as trabecular bone score (TBS) or mean Hurst parameter (H) could help to find women who are at high risk of fracture in the non-osteoporotic group. The purpose of this study was to combine BMD and microarchitectural texture parameters (spine TBS and calcaneus H) for the detection of osteoporotic fractures. Two hundred and fifty five women had a lumbar spine (LS), total hip (TH), and femoral neck (FN) DXA. Additionally, texture analyses were performed with TBS on spine DXA and with H on calcaneus radiographs. Seventy-nine women had prevalent fragility fractures. The association with fracture was evaluated by multivariate logistic regressions. The diagnostic value of each parameter alone and together was evaluated by odds ratios (OR). The area under curve (AUC) of the receiver operating characteristics (ROC) were assessed in models including BMD, H, and TBS. Women were also classified above and under the lowest tertile of H or TBS according to their BMD status. Women with prevalent fracture were older and had lower TBS, H, LS-BMD, and TH-BMD than women without fracture. Age-adjusted ORs were 1.66, 1.70, and 1.93 for LS, FN, and TH-BMD, respectively. Both TBS and H remained significantly associated with fracture after adjustment for age and TH-BMD: OR 2.07 [1.43; 3.05] and 1.47 [1.04; 2.11], respectively. The addition of texture parameters in the multivariate models didn't show a significant improvement of the ROC-AUC. However, women with normal or osteopenic BMD in the lowest range of TBS or H had significantly more fractures than women above the TBS or the H threshold. We have shown the potential interest of texture parameters such as TBS and H in addition to BMD to discriminate patients with or without osteoporotic fractures. However, their clinical added values should be evaluated relative to other risk factors.
Resumo:
Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants.
Resumo:
OBJECTIVE: To demonstrate the validity and reliability of volumetric quantitative computed tomography (vQCT) with multi-slice computed tomography (MSCT) and dual energy X-ray absorptiometry (DXA) for hip bone mineral density (BMD) measurements, and to compare the differences between the two techniques in discriminating postmenopausal women with osteoporosis-related vertebral fractures from those without. METHODS: Ninety subjects were enrolled and divided into three groups based on the BMD values of the lumbar spine and/or the femoral neck by DXA. Groups 1 and 2 consisted of postmenopausal women with BMD changes <-2SD, with and without radiographically confirmed vertebral fracture (n=11 and 33, respectively). Group 3 comprised normal controls with BMD changes > or =-1SD (n=46). Post-MSCT (GE, LightSpeed16) scan reconstructed images of the abdominal-pelvic region, 1.25 mm thick per slice, were processed by OsteoCAD software to calculate the following parameters: volumetric BMD values of trabecular bone (TRAB), cortical bone (CORT), and integral bone (INTGL) of the left femoral neck, femoral neck axis length (NAL), and minimum cross-section area (mCSA). DXA BMD measurements of the lumbar spine (AP-SPINE) and the left femoral neck (NECK) also were performed for each subject. RESULTS: The values of all seven parameters were significantly lower in subjects of Groups 1 and 2 than in normal postmenopausal women (P<0.05, respectively). Comparing Groups 1 and 2, 3D-TRAB and 3D-INTGL were significantly lower in postmenopausal women with vertebral fracture(s) [(109.8+/-9.61) and (243.3+/-33.0) mg/cm3, respectively] than in those without [(148.9+/-7.47) and (285.4+/-17.8) mg/cm(3), respectively] (P<0.05, respectively), but no significant differences were evident in AP-SPINE or NECK BMD. CONCLUSION: the femoral neck-derived volumetric BMD parameters using vQCT appeared better than the DXA-derived ones in discriminating osteoporotic postmenopausal women with vertebral fractures from those without. vQCT might be useful to evaluate the effect of osteoporotic vertebral fracture status on changes in bone mass in the femoral neck.