977 resultados para octonion algebra
Resumo:
Let S be a simplicial affine semigroup such that its semigroup ring A = k[S] is Buchsbaum. We prove for such A the Herzog-Vasconcelos conjecture: If the A-module Der(k)A of k-linear derivations of A has finite projective dimension then it is free and hence A is a polynomial ring by the well known graded case of the Zariski-Lipman conjecture.
Resumo:
Some basic results that help in determining the Diversity-Multiplexing Tradeoff (DMT) of cooperative multihop networks are first identified. As examples, the maximum achievable diversity gain is shown to equal the min-cut between source and sink, whereas the maximal multiplexing gain is shown to equal the minimum rank of the matrix characterizing the MIMO channel appearing across a cut in the network. Two multi-hop generalizations of the two-hop network are then considered, namely layered networks as well as a class of networks introduced here and termed as K-parallel-path (KPP) networks. The DMT of KPP networks is characterized for K > 3. It is shown that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for fully-connected, layered networks. Explicit coding schemes achieving the DMT that make use of cyclic-division-algebra-based distributed space-time codes underlie the above results. Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple, amplify-and-forward protocols are often sufficient to attain the optimal DMT.
Resumo:
In this paper, we consider the application of belief propagation (BP) to achieve near-optimal signal detection in large multiple-input multiple-output (MIMO) systems at low complexities. Large-MIMO architectures based on spatial multiplexing (V-BLAST) as well as non-orthogonal space-time block codes(STBC) from cyclic division algebra (CDA) are considered. We adopt graphical models based on Markov random fields (MRF) and factor graphs (FG). In the MRF based approach, we use pairwise compatibility functions although the graphical models of MIMO systems are fully/densely connected. In the FG approach, we employ a Gaussian approximation (GA) of the multi-antenna interference, which significantly reduces the complexity while achieving very good performance for large dimensions. We show that i) both MRF and FG based BP approaches exhibit large-system behavior, where increasingly closer to optimal performance is achieved with increasing number of dimensions, and ii) damping of messages/beliefs significantly improves the bit error performance.
Resumo:
Let K be a field and let m(0),...,m(e-1) be a sequence of positive integers. Let W be a monomial curve in the affine e-space A(K)(e), defined parametrically by X-0 = T-m0,...,Xe-1 = Tme-1 and let p be the defining ideal of W. In this article, we assume that some e-1 terms of m(0), m(e-1) form an arithmetic sequence and produce a Grobner basis for p.
Resumo:
We describe a System-C based framework we are developing, to explore the impact of various architectural and microarchitectural level parameters of the on-chip interconnection network elements on its power and performance. The framework enables one to choose from a variety of architectural options like topology, routing policy, etc., as well as allows experimentation with various microarchitectural options for the individual links like length, wire width, pitch, pipelining, supply voltage and frequency. The framework also supports a flexible traffic generation and communication model. We provide preliminary results of using this framework to study the power, latency and throughput of a 4x4 multi-core processing array using mesh, torus and folded torus, for two different communication patterns of dense and sparse linear algebra. The traffic consists of both Request-Response messages (mimicing cache accesses)and One-Way messages. We find that the average latency can be reduced by increasing the pipeline depth, as it enables higher link frequencies. We also find that there exists an optimum degree of pipelining which minimizes energy-delay product.
Resumo:
We look at graphical descriptions of block codes known as trellises, which illustrate connections between algebra and graph theory, and can be used to develop powerful decoding algorithms. Trellis sizes for linear block codes are known to grow exponentially with the code parameters. Of considerable interest to coding theorists therefore, are more compact descriptions called tail-biting trellises which in some cases can be much smaller than any conventional trellis for the same code . We derive some interesting properties of tail-biting trellises and present a new decoding algorithm.
Resumo:
This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general screw systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. The formulation is illustrated with examples of practical manipulators.
Resumo:
To effectively support today’s global economy, database systems need to manage data in multiple languages simultaneously. While current database systems do support the storage and management of multilingual data, they are not capable of querying across different natural languages. To address this lacuna, we have recently proposed two cross-lingual functionalities, LexEQUAL[13] and SemEQUAL[14], for matching multilingual names and concepts, respectively. In this paper, we investigate the native implementation of these multilingual functionalities as first-class operators on relational engines. Specifically, we propose a new multilingual storage datatype, and an associated algebra of the multilingual operators on this datatype. These components have been successfully implemented in the PostgreSQL database system, including integration of the algebra with the query optimizer and inclusion of a metric index in the access layer. Our experiments demonstrate that the performance of the native implementation is up to two orders-of-magnitude faster than the corresponding outsidethe- server implementation. Further, these multilingual additions do not adversely impact the existing functionality and performance. To the best of our knowledge, our prototype represents the first practical implementation of a crosslingual database query engine.
Resumo:
Three-dimensional effects are a primary source of discrepancy between the measured values of automotive muffler performance and those predicted by the plane wave theory at higher frequencies. The basically exact method of (truncated) eigenfunction expansions for simple expansion chambers involves very complicated algebra, and the numerical finite element method requires large computation time and core storage. A simple numerical method is presented in this paper. It makes use of compatibility conditions for acoustic pressure and particle velocity at a number of equally spaced points in the planes of the junctions (or area discontinuities) to generate the required number of algebraic equations for evaluation of the relative amplitudes of the various modes (eigenfunctions), the total number of which is proportional to the area ratio. The method is demonstrated for evaluation of the four-pole parameters of rigid-walled, simple expansion chambers of rectangular as well as circular cross-section for the case of a stationary medium. Computed values of transmission loss are compared with those computed by means of the plane wave theory, in order to highlight the onset (cutting-on) of various higher order modes and the effect thereof on transmission loss of the muffler. These are also compared with predictions of the finite element methods (FEM) and the exact methods involving eigenfunction expansions, in order to demonstrate the accuracy of the simple method presented here.
Resumo:
In the world of high performance computing huge efforts have been put to accelerate Numerical Linear Algebra (NLA) kernels like QR Decomposition (QRD) with the added advantage of reconfigurability and scalability. While popular custom hardware solution in form of systolic arrays can deliver high performance, they are not scalable, and hence not commercially viable. In this paper, we show how systolic solutions of QRD can be realized efficiently on REDEFINE, a scalable runtime reconfigurable hardware platform. We propose various enhancements to REDEFINE to meet the custom need of accelerating NLA kernels. We further do the design space exploration of the proposed solution for any arbitrary application of size n × n. We determine the right size of the sub-array in accordance with the optimal pipeline depth of the core execution units and the number of such units to be used per sub-array.
Resumo:
The setting considered in this paper is one of distributed function computation. More specifically, there is a collection of N sources possessing correlated information and a destination that would like to acquire a specific linear combination of the N sources. We address both the case when the common alphabet of the sources is a finite field and the case when it is a finite, commutative principal ideal ring with identity. The goal is to minimize the total amount of information needed to be transmitted by the N sources while enabling reliable recovery at the destination of the linear combination sought. One means of achieving this goal is for each of the sources to compress all the information it possesses and transmit this to the receiver. The Slepian-Wolf theorem of information theory governs the minimum rate at which each source must transmit while enabling all data to be reliably recovered at the receiver. However, recovering all the data at the destination is often wasteful of resources since the destination is only interested in computing a specific linear combination. An alternative explored here is one in which each source is compressed using a common linear mapping and then transmitted to the destination which then proceeds to use linearity to directly recover the needed linear combination. The article is part review and presents in part, new results. The portion of the paper that deals with finite fields is previously known material, while that dealing with rings is mostly new.Attempting to find the best linear map that will enable function computation forces us to consider the linear compression of source. While in the finite field case, it is known that a source can be linearly compressed down to its entropy, it turns out that the same does not hold in the case of rings. An explanation for this curious interplay between algebra and information theory is also provided in this paper.
Resumo:
Generalized Bose operators correspond to reducible representations of the harmonic oscillator algebra. We demonstrate their relevance in the construction of topologically non-trivial solutions in noncommutative gauge theories, focusing our attention to flux tubes, vortices, and instantons. Our method provides a simple new relation between the topological charge and the number of times the basic irreducible representation occurs in the reducible representation underlying the generalized Bose operator. When used in conjunction with the noncommutative ADHM construction, we find that these new instantons are in general not unitarily equivalent to the ones currently known in literature.
Resumo:
In this paper we have developed methods to compute maps from differential equations. We take two examples. First is the case of the harmonic oscillator and the second is the case of Duffing's equation. First we convert these equations to a canonical form. This is slightly nontrivial for the Duffing's equation. Then we show a method to extend these differential equations. In the second case, symbolic algebra needs to be used. Once the extensions are accomplished, various maps are generated. The Poincare sections are seen as a special case of such generated maps. Other applications are also discussed.
Resumo:
In this paper we approach the problem of computing the characteristic polynomial of a matrix from the combinatorial viewpoint. We present several combinatorial characterizations of the coefficients of the characteristic polynomial, in terms of walks and closed walks of different kinds in the underlying graph. We develop algorithms based on these characterizations, and show that they tally with well-known algorithms arrived at independently from considerations in linear algebra.
Resumo:
In this note, we show that a quasi-free Hilbert module R defined over the polydisk algebra with kernel function k(z,w) admits a unique minimal dilation (actually an isometric co-extension) to the Hardy module over the polydisk if and only if S (-1)(z, w)k(z, w) is a positive kernel function, where S(z,w) is the Szego kernel for the polydisk. Moreover, we establish the equivalence of such a factorization of the kernel function and a positivity condition, defined using the hereditary functional calculus, which was introduced earlier by Athavale [8] and Ambrozie, Englis and Muller [2]. An explicit realization of the dilation space is given along with the isometric embedding of the module R in it. The proof works for a wider class of Hilbert modules in which the Hardy module is replaced by more general quasi-free Hilbert modules such as the classical spaces on the polydisk or the unit ball in a'', (m) . Some consequences of this more general result are then explored in the case of several natural function algebras.