922 resultados para multilayer perceptrons
Resumo:
We report a structure of (In, Ga)As/GaAs quantum dots which are vertically correlated and laterally aligned in a hexagonal way thus forming three-dimensionally ordered arrays. The growth pathway is based on a mechanism of self-assembly by strain-mediated multilayer vertical stacking on a planar GaAs(100) substrate, rather than molecular-beam epitaxy on a prepatterned substrate. The strain energy of lateral island-island interaction is minimum for the arrangement of hexagonal ordering. However, realization of hexagonal ordering not only depends on a complicated trade-off between lateral and vertical island-island interaction but is also related to a delicate and narrow growth kinetics window.
Resumo:
Zinc-blende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. Compared with the typical thickness [2-3 ML (ML denotes monolayers)] of zb-CrSb grown directly on GaAs, the thickness of zb-CrSb grown on (In,Ga)As has been increased largely; the maximum can be up to similar to 9 ML. High-resolution cross sectional transmission electron microscopy images show that the zb-CrSb layer is combined with (In,Ga)As buffer layer without any dislocations at the interface. (C) 2006 American Institute of Physics.
Resumo:
We try to clarify the controversy about the origin of room-temperature ferromagnetism in a CrAs compound. Two kinds of CrAs thin films were grown on GaAs by molecular-beam epitaxy. Structural analyses confirm that the as-grown CrAs film is a pure zinc-blende phase. Magnetic measurements suggest that room-temperature ferromagnetism exists in zinc-blende CrAs. In contrast, the CrAs film turns into a mixture of zinc-blende and deformed CrAs after annealing. A ferromagnetic signal measured at room temperature demonstrates that zinc-blende CrAs remains room-temperature ferromagnetism even when it is partly deformed into a non-zinc-blende phase. (c) 2006 American Institute of Physics.
Resumo:
The influences of the cavity on the low-temperature photoluminescence of Si0.59Ge0.41/Si multiquantum wells grown on silicon-on-insulator substrates are discussed. The positions of the modulated photoluminescence (PL) peaks not only relate to the nature of SiGe/Si multiquantum wells, but also relate to the characteristic of the cavity. With increasing temperature, a redshift of the modulated PL peak originating from the thermo-optical effect of the cavity is observed.
Resumo:
Zincblende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on relaxed and strained (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. The structural characterizations of CrSb layers fabricated under the two cases are studied by using synchrotron grazing incidence x-ray diffraction (GID). The results of GID experiments indicate that no sign of second phase exists in all the zb-CrSb layers. Superconducting quantum interference device measurements demonstrate that the thickness of zb-CrSb layers grown on both relaxed and strained (In,Ga)As buffer layers can be increased to similar to 12 monolayers (similar to 3.6nm), compared to similar to 3 monolayers (similar to 1nm) on GaAs directly.
Resumo:
Based on the band-anticrossing model, the effect of the strain-compensated layer and the strain-mediated layer on the band structure, the gain, and the differential gain of GaInNAs-GaAs quantum well lasers have been investigated. Different band-filling mechanisms have been illustrated. Compared to the GaInNAs-GaAs single quantum well with the same wavelength,, the introduction. (if the strain-compensated layer and the strain-mediated layer increases the transparency carrier density. However, these multilayer structures help to suppress the degradation of the differential gain.
Resumo:
Based on the band anticrossing model, the effects of the strain-compensated layer and the strain-mediated layer on the band structure, gain and differential gain of GaInNAs/GaAs quantum well lasers have been investigated. The results show that the GaNAs barrier has a disadvantage in increasing the density of states in the conduction band. Meanwhile, the multilayer quantum wells need higher transparency carrier density than the GaInNAs/GaAs single quantum well with the same wavelength. However, they help to suppress the degradation of the differential gain. The calculation also shows that from the viewpoint of band structure, the strain-compensated structure and the strain-mediated structure have similar features.
Resumo:
The magnetic properties of spin-valve pinned by FeMn layer were investigated after it was annealed at different temperatures. Its property was dependent on the vacuum annealing temperature. The pinning field could be increased through annealing at a temporature lower than 200degreesC;the pinning field would reduce and other properties be deteriorated as the annealing temperature was higher than 200degreesC; the pinning effect lost and giantmagnetic resistance disappeared at 300degreesC. Based on the results of AES analysis it was concluded that the diffusion in spin-valve multilayer was along grain boundary.
Resumo:
InAs/In0.52Al0.48As nanowire multilayer arrays were grown on (001) InP substrate by molecular-beam epitaxy. The structural property of the arrays was investigated by transmission electron microscopy. The results clearly showed the formation of InAs nanowires, evolution of InAs/InAlAs interface, and composition and thickness modulations in the InAlAs spacer layer. A fixed spatial ordering of InAs/InAlAs nanowires was revealed for all the samples. Regardless of the change in InAlAs spacer thickness of different samples, (i) the nanowires of one InAs layer are positioned above the nanowire spacing in the previous InAs layer and (ii) the layer-ordering orientation angle of nanowires is fixed. The results were explained from the viewpoint of the growth kinetics. The effect of InAlAs spacers is suggested to play an important role on the spatial ordering of the nanowire arrays. (C) 2002 American Institute of Physics.
Resumo:
The size of equilateral triangle resonator (ETR) needed for confining the fundamental mode is investigated by the total reflection condition of mode light rays and the FDTD numerical simulation. The confinement of the TM modes can be explained by the total reflection of mode light rays, and the confinement of the TE modes requires a larger ETR than the TM modes, which may be caused by excess scattering or radiation loss for the TE modes. With the multilayer staircase approximation, it is found that the spontaneous emission factor of the ETR lasers has the same form as that of strip waveguide lasers.
Resumo:
In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled InAs quantum wires (QWRs) embedded in In0.52Al0.48As, In0.53Ga0.47As, and (In0.52Al0.48As)(n)/(In0.53Ga0.47As)(m)-short-period-lattice matrices on InP(001) were fabricated with molecular beam epitaxy (MBE). These QWR lines are along [110], x 4 direction in the 2 x 4 reconstructed (001) surface as revealed with reflection high-energy electron diffraction (RHEED). Alignment of quantum wires in different layers in the InAs/spacer multilayer structures depends on the composition of spacer layers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
High-density InAs nanowires embedded in an In0.52Al0.48As matrix are fabricated in situ by molecular beam epitaxy on (100) InP. The average cross section of the nanowires is 4.5 x 10 nm(2). The linear density is as high as 70 wires/mu m. The spatial alignment of the multilayer arrays exhibit strong anticorrelation in the growth direction. Large polarization anisotropic effect is observed in polarized photoluminescence measurements. (C) 1999 American Institute of Physics. [S0003-6951(99)04134-0].
Structural and infrared absorption properties of self-organized InGaAs GaAs quantum dots multilayers
Resumo:
Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector.
Resumo:
Structural properties of SiGe/Si single wells are studied by double-crystal X-ray diffraction. Four SiGe/Si single wells have been grown on Si (0 0 1) at 750 degrees C by disilane and solid-Ge molecular beam epitaxy with varied disilane cracking temperature. Using dynamic theory, together with kinematic theory and the specific growth procedure adopted, structural parameters in the multilayer structure are determined precisely. The results are compared with those obtained from PL and XTEM as well as AES measurements. It is found that disilane adsorption is dependent on cracking temperature as well as Ge incorporation. Disilane adsorption is increased by cracking disilane while it decreased with Ge incorporation (C) 1998 Elsevier Science B.V. All rights reserved.