860 resultados para mitochondrial alterations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The senescence-accelerated SAMP8 mouse model displays features of cognitive decline and Alzheimer's disease. With the purpose of identifying potential epigenetic markers involved in aging and neurodegeneration, here we analyzed the expression of 84 mature miRNAs, the expression of histone-acetylation regulatory genes and the global histone acetylation in the hippocampus of 8-month-old SAMP8 mice, using SAMR1 mice as control. We also examined the modulation of these parameters by 8 weeks of voluntary exercise. Twenty-one miRNAs were differentially expressed between sedentary SAMP8 and SAMR1 mice and seven miRNAs were responsive to exercise in both strains. SAMP8 mice showed alterations in genes involved in protein acetylation homeostasis such as Sirt1 and Hdac6 and modulation of Hdac3 and Hdac5 gene expression by exercise. Global histone H3 acetylation levels were reduced in SAMP8 compared with SAMR1 mice and reached control levels in response to exercise. In sum, data presented here provide new candidate epigenetic markers for aging and neurodegeneration and suggest that exercise training may prevent or delay some epigenetic alterations associated with accelerated aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The senescence-accelerated SAMP8 mouse model displays features of cognitive decline and Alzheimer's disease. With the purpose of identifying potential epigenetic markers involved in aging and neurodegeneration, here we analyzed the expression of 84 mature miRNAs, the expression of histone-acetylation regulatory genes and the global histone acetylation in the hippocampus of 8-month-old SAMP8 mice, using SAMR1 mice as control. We also examined the modulation of these parameters by 8 weeks of voluntary exercise. Twenty-one miRNAs were differentially expressed between sedentary SAMP8 and SAMR1 mice and seven miRNAs were responsive to exercise in both strains. SAMP8 mice showed alterations in genes involved in protein acetylation homeostasis such as Sirt1 and Hdac6 and modulation of Hdac3 and Hdac5 gene expression by exercise. Global histone H3 acetylation levels were reduced in SAMP8 compared with SAMR1 mice and reached control levels in response to exercise. In sum, data presented here provide new candidate epigenetic markers for aging and neurodegeneration and suggest that exercise training may prevent or delay some epigenetic alterations associated with accelerated aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (~800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is a widely expressed neurotransmitter in the central and peripheral nervous systems. Thymidine 1128 to cytocine substitution in the signal sequence of the preproNPY results in a single amino acid change where leucine is changed to proline. This L7P change leads to a conformational change of the signal sequence which can have an effect on the intracellular processing of NPY. The L7P polymorphism was originally associated with higher total and LDL cholesterol levels in obese subjects. It has also been associated with several other physiological and pathophysiological responses such as atherosclerosis and T2 diabetes. However, the changes on the cellular level due to the preproNPY signal sequence L7P polymorphism were not known. The aims of the current thesis were to study the effects of the [p.L7]+[p.L7] and the [p.L7]+[p.P7] genotypes in primary cultured and genotyped human umbilical vein endothelial cells (HUVEC), in neuroblastoma (SK-N-BE(2)) cells and in fibroblast (CHO-K1) cells. Also, the putative effects of the L7P polymorphism on proliferation, apoptosis and LDL and nitric oxide metabolism were investigated. In the course of the studies a fragment of NPY targeted to mitochondria was found. With the putative mitochondrial NPY fragment the aim was to study the translational preferences and the mobility of the protein. The intracellular distribution of NPY between the [p.L7]+[p.L7] and the [p.L7]+[p.P7] genotypes was found to be different. NPY immunoreactivity was prominent in the [p.L7]+[p.P7] cells while the proNPY immunoreactivity was prominent in the [p.L7]+[p.L7] genotype cells. In the proliferation experiments there was a difference in the [p.L7]+[p.L7] genotype cells between early and late passage (aged) cells; the proliferation was raised in the aged cells. NPY increased the growth of the cells with the [p.L7]+[p.P7] genotype. Apoptosis did not seem to differ between the genotypes, but in the aged cells with the [p.L7]+[p.L7] genotype, LDL uptake was found to be elevated. Furthermore, the genotype seemed to have a strong effect on the nitric oxide metabolism. The results indicated that the mobility of NPY protein inside the cells was increased within the P7 containing constructs. The existence of the mitochondria targeted NPY fragment was verified, and translational preferences were proved to be due to the origin of the cells. Cell of neuronal origin preferred the translation of mature NPY (NPY1-36) when compared to the non neuronal cells that translated both, NPY and the mitochondrial fragment of NPY. The mobility of the mitochondrial fragment was found to be minimal. The functionality of the mitochondrial NPY fragment remains to be investigated. L7P polymorphism in the preproNPY causes a series of intracellular changes. These changes may contribute to the state of cellular senescence, vascular tone and lead to endothelial dysfunction and even to increased susceptibility to diseases, like atherosclerosis and T2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection by Sugarcane yellow leaf virus (ScYLV) causes severe leaf symptoms in sugarcane (Saccharum spp.) hybrids, which indicate alterations in its photosynthetic apparatus. To gain an overview of the physiological status of infected plants, we evaluated chlorophyll a fluorescence and gas exchange assays, correlating the results with leaf metabolic surveys, i.e., photosynthetic pigments and carbohydrate contents. When compared to healthy plants, infected plants showed a reduction in potential quantum efficiency for photochemistry of photosystem (PSII) and alterations in the filling up of the plastoquinone (PQ) pool. They also showed reduction in the CO2 net exchange rates, probably as a consequence of impaired quantum yield. In addition, reductions were found in the contents of photosynthetic leaf pigments and in the ratio chlorophyll a/chlorophyll b (chla/chlb). Carbohydrate content in the leaves was increased as a secondary effect of the ScYLV infection. This article discusses the relation of virus replication and host defense responses with general alterations in the photosynthetic apparatus and in the metabolism of infected plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria are present in all eukaryotic cells. They enable these cells utilize oxygen in the production of adenosine triphosphate in the oxidative phosphorylation system, the mitochondrial respiratory chain. The concept ‘mitochondrial disease’ conventionally refers to disorders of the respiratory chain that lead to oxidative phosphorylation defect. Mitochondrial disease in humans can present at any age, and practically in any organ system. Mitochondrial disease can be inherited in maternal, autosomal dominant, autosomal recessive, or X-chromosomal fashion. One of the most common molecular etiologies of mitochondrial disease in population is the m.3243A>G mutation in the MT-TL1 gene, encoding mitochondrial tRNALeu(UUR). Clinical evaluation of patients with m.3243A>G has revealed various typical clinical features, such as stroke-like episodes, diabetes mellitus and sensorineural hearing loss. The prevalence and clinical characteristics of mitochondrial disease in population are not well known. This thesis consists of a series of studies, in which the prevalence and characteristics of mitochondrial disease in the adult population of Southwestern Finland were assessed. Mitochondrial haplogroup Uk was associated with increased risk of occipital ischemic stroke among young women. Large-scale mitochondrial DNA deletions and mutations of the POLG1 gene were the most common molecular etiologies of progressive external ophthalmoplegia. Around 1% of diabetes mellitus emerging between the ages 18 – 45 years was associated with the m.3243A>G mutation. Moreover, among these young diabetic patients, mitochondrial haplogroup U was associated with maternal family history of diabetes. These studies demonstrate the usefulness of carefully planned molecular epidemiological investigations in the study of mitochondrial disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: to assess the prevalence of abnormalities found by computed tomography (CT) of the chest in patients with squamous cell carcinoma of the head and neck. Methods: we retrospectively analyzed chest CT exams of 209 patients with squamous cell carcinoma of the head and neck. The CT findings were stratified as inflammatory / infectious, parenchymal, nodular uncharacteristic and nodular metastatic / tumoral Results: alterations were diagnosed in 66.6% of patients. Of these, 25.3% represented emphysema; 18.8%, uncharacteristic micronodules; 12.9%, metastases; 11.9%, thoracic lymph node enlargements; and in 6.6% we detected active pulmonary tuberculosis or its sequelae, pneumonia or inflammatory / infectious signs and pleural thickening or effusion. Conclusion: the prevalence of exams with alterations and the considerable rate of detected metastases indicate that chest CT should be required for diagnostic and / or staging in cases of head and neck cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

12 x 21 cm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute toxicity of the glyphosate -N (phosphonomethyl) glycine- herbicide, Roundup®, in juveniles of cachama blanca, (Piaractus brachypomus), was evaluated and the histopathological lesions were assessed. The 96 h lethal concentration 50 was 97.47mg.L-1 (P<0.05). In the gill, necrotic and proliferative lesions were detected. In the liver, congestion, degenerative foci, hyaline droplets and lipidic vacuolization of the hepatocytes were observed. In the stomach mild hyperplasia of mucous cells was detected, which was also observed in the skin. In this latter tissue, a large increase in the thickness of the epidermis with necrotic lesions, infiltration of leukocytes and melanin pigment were observed. In the brain, degenerative foci of neuronal bodies in the telencephalon associated with gliosis and infiltration of eosinophilic granule cells/mast cells were shown. In conclusion, gills, liver, skin and brain are susceptible to Roundup®. Moreover, effects on the central nervous system could affect olfaction as well as individual and group behavior, the reproductive performance of the fish and hence have repercussions at the population level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol consumption during pregnancy can potentially affect the developing fetus in devastating ways, leading to a range of physical, neurological, and behavioral alterations most accurately termed Fetal Alcohol Spectrum Disorders (FASD). Despite the fact that it is a preventable disorder, prenatal alcohol exposure today constitutes a leading cause of intellectual disability in the Western world. In Western countries where prevalence studies have been performed the rates of FASD exceed, for example, autism spectrum disorders, Down’s syndrome and cerebral palsy. In addition to the direct effects of alcohol, children and adolescents with FASD are often exposed to a double burden in life, as their neurological sequelae are accompanied by adverse living surroundings exposing them to further environmental risk. However, children with FASD today remain remarkably underdiagnosed by the health care system. This thesis forms part of a larger multinational research project, The Collaborative Initiative on Fetal Alcohol Spectrum Disorders (the CIFASD), initiated by the National Institute of Alcohol Abuse and Alcoholism (NIAAA) in the U.S.A. The general aim of the present thesis was to examine a cohort of children and adolescents growing up with fetal alcohol-related damage in Finland. The thesis consists of five studies with a broad focus on diagnosis, cognition, behavior, adaptation and brain metabolic alterations in children and adolescents with FASD. The participants consisted of four different groups: one group with histories of prenatal exposure to alcohol, the FASD group; one IQ matched contrast group mostly consisting of children with specific learning disorder (SLD); and two typically-developing control groups (CON1 and CON2). Participants were identified through medical records, random sampling from the Finnish national population registry and email alerts to students. Importantly, the participants in the present studies comprise a group of very carefully clinically characterized children with FASD as the studies were performed in close collaboration with leading experts in the field (Prof. Edward Riley and Prof. Sarah Mattson, Center for Behavioral Teratology, San Diego State University, U.S.A; Prof. Eugene Hoyme, Sanford School of Medicine, University of South Dakota, U.S.A.). In the present thesis, the revised Institute of Medicine diagnostic criteria for FASD were tested on a Finnish population and found to be a reliable tool for differentiating among the subgroups of FASD. A weighted dysmorphology scoring system proved to be a valuable additional adjunct in quantification of growth deficits and dysmorphic features in children with FASD (Study 1). The purpose of Study 2 was to clarify the relationship between alcohol-related dysmorphic features and general cognitive capacity. Results showed a significant correlation between dysmorphic features and cognitive capacity, suggesting that children with more severe growth deficiency and dysmorphic features have more cognitive limitations. This association was, however, only moderate, indicating that physical markers and cognitive capacity not always go hand in hand in individuals with FASD. Behavioral problems in the FASD group proved substantial compared to the typically developing control group. In Study 3 risk and protective factors associated with behavioral problems in the FASD group were explored further focusing on diagnostic and environmental factors. Two groups with elevated risks for behavioral problems emerged: length of time spent in residential care and a low dysmorphology score proved to be the most pervasive risk factor for behavioral problems. The results underscore the clinical importance of appropriate services and care for less visibly alcohol affected children and highlight the need to attend to children with FASD being raised in institutions. With their background of early biological and psychological impairment compounded with less opportunity for a close and continuous caregiver relationship, such children seem to run an especially great risk of adverse life outcomes. Study 4 focused on adaptive abilities such as communication, daily living skills and social skills, in other words skills that are important for gradually enabling an independent life, maintain social relationships and allow the individual to become integrated into society. The results showed that adaptive abilities of children and adolescents growing up with FASD were significantly compromised compared to both typically-developing peers and IQ-matched children with SLD. Clearly different adaptive profiles were revealed where the FASD group performed worse than the SLD group, who in turn performed worse than the CON1 group. Importantly, the SLD group outperformed the FASD group on adaptive behavior in spite of comparable cognitive levels. This is the first study to compare adaptive abilities in a group of children and adolescents with FASD relative to both a contrast group of IQ-matched children with SLD and to a group of typically-developing peers. Finally, in Study 5, through magnetic resonance spectroscopic imaging (MRS) evidence of longstanding neurochemical alterations were observed in adolescents and young adults with FASD related to alcohol exposure in utero 14-20 years earlier. Neurochemical alterations were seen in several brain areas: in frontal and parietal cortices, corpus callosum, thalamus and frontal white matter areas as well as in the cerebellar dentate nucleus. The findings are compatible with neuropsychological findings in FASD. Glial cells seemed to be more affected than neurons. In conclusion, more societal efforts and resources should be focused on recognizing and diagnosing FASD, and supporting subgroups with elevated risk of poor outcome. Without adequate intervention children and adolescents with FASD run a great risk of marginalization and social maladjustment, costly not only to society but also to the lives of the many young people with FASD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several characteristics are important in a traceability system of animal products, such as age at slaughter, breed composition, besides information of the productive chain. In general, the certification agent records information about the animals and the system which it came from, although cannot guarantee that the slaughtering, meat processing and distribution are error proof. Besides, there is a differential price, at least at the international market, based on sex and breed composition of the animals. Genetic markers allow identification of characteristics controlled in the beef cattle traceability program, as sex and breed composition, in order to correctly identify and appraise the final product for the consumer. The hypothesis of this study was that the majority beef samples retailed in the local market originate from female with a great participation of zebu breeds. Therefore, the objective of this work was to characterize retail beef samples with DNA markers that identify cattle sex and breed composition. Within 10 beef shops localized in Pirassununga, SP, Brazil, 61 samples were collected, all were genotyped as harboring Bos taurus mitochondrial DNA and 18 were positive for the Y chromosome amplification (male). For the marker sat1711b-Msp I the frequency of the allele A was 0.278 and for the marker Lhr-Hha I the frequency of the allele T was 0.417. The results of sat1711b-Msp I and Lhr-Hha I allelic frequencies are suggestive that the proportion of indicus genome compared with the taurine genome in the market meat is smaller than the observed in the Nellore breed. The procedure described in this study identified sex and subspecies characteristics of beef meat samples, with potential application in meat products certification in special as an auxiliary tool in beef cattle traceability programs.