969 resultados para mechanical stability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granulocyte-colony stimulating factor (G-CSF) is a current pharmacological approach to increase peripheral neutrophil counts after anti-tumor therapies. Pain is most relevant side effect of G-CSF in healthy volunteers and cancer patients. Therefore, the mechanisms of G-CSF-induced hyperalgesia were investigated focusing on the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase). JNK (Jun N-terminal Kinase) and p38, and PI(3)K (phosphatidylinositol 3-kinase). G-CSF induced dose (30-300 ng/paw)-dependent mechanical hyperalgesia, which was inhibited by local post-treatment with morphine. This effect of morphine was reversed by naloxone (opioid receptor antagonist). Furthermore, G-CSF-induced hyperalgesia was inhibited in a dose-dependent manner by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI(3)K (wortmanin) inhibitors. The co-treatment with MAP kinase and PI(3)K inhibitors, at doses that were ineffective as single treatment, significantly inhibited G-CSF-induced hyperalgesia. Concluding, in addition to systemic opioids, peripheral opioids as well as spinal treatment with MAP kinases and PI(3)K inhibitors also reduce G-CSF-induced pain. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophil migration is responsible for tissue damage observed in inflammatory diseases. Neutrophils are also implicated in inflammatory nociception, but mechanisms of their participation have not been elucidated. In the present study, we addressed these mechanisms in the carrageenan-induced mechanical hypernociception, which was determined using a modification of the Randall-Sellito test in rats. Neutrophil accumulation into the plantar tissue was determined by the contents of myeloperoxidase activity, whereas cytokines and PGE(2) levels were measured by ELISA and radioimmunoassay, respectively. The pretreatment of rats with fucoidin (a leukocyte adhesion inhibitor) inhibited carrageenan-induced hypernociception in a dose- and time-dependent manner. Inhibition of hypernociception by fucoidin was associated with prevention of neutrophil recruitment, as it did not inhibit the hypernociception induced by the direct-acting hypernociceptive mediators, PGE(2) and dopamine, which cause hypernociception, independent of neutrophils. Fucoidin had no effect on carrageenan-induced TNF-alpha, IL-1 beta, and cytokine-induced neutrophil chemoattractant 1 (CINC-1)/CXCL1 production, suggesting that neutrophils were not the source of hypernociceptive cytokines. Conversely, hypernociception and neutrophil migration induced by TNF-alpha, IL-1 beta, and CINC-1/CXCL1 was inhibited by fucoidin, suggesting that neutrophils are involved in the production of direct-acting hypernociceptive mediators. Indeed, neutrophils stimulated in vitro with IL-1 beta produced PGE(2), and IL-1 beta-induced PGE(2) production in the rat paw was inhibited by the pretreatment with fucoidin. In conclusion, during the inflammatory process, the migrating neutrophils participate in the cascade of events leading to mechanical hypernociception, at least by mediating the release of direct-acting hypernociceptive mediators, such as PGE(2). Therefore, the blockade of neutrophil migration could be a target to development of new analgesic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

particularly neutrophil chemoattraction. Herein, the role of C5a in the genesis of inflammatory hypernociception was investigated in rats and mice using the specific C5a receptor antagonist PMX53 (AcF-[OP(D-Cha)WR]). Experimental approach: Mechanical hypernociception was evaluated with a modification of the Randall-Selitto test in rats and electronic pressure meter paw test in mice. Cytokines were measured by ELISA and neutrophil migration was determined by myeloperoxidase activity. Key results: Local pretreatment of rats with PMX53 (60-180 mg per paw) inhibited zymosan-, carrageenan-, lipopolysaccharide (LPS)- and antigen-induced hypernociception. These effects were associated with C5a receptor blockade since PMX53 also inhibited the hypernociception induced by zymosan- activated serum and C5a but not by the direct-acting hypernociceptive mediators, prostaglandin E-2 and dopamine. Underlying the C5a hypernociceptive mechanisms, PMX53 did not alter the cytokine release induced by inflammatory stimuli. However, PMX53 inhibited cytokine-induced hypernociception. PMX53 also inhibited the recruitment of neutrophils induced by zymosan but not by carrageenan or LPS, indicating an involvement of neutrophils in the hypernociceptive effect of C5a. Furthermore, the C5a-induced hypernociception was reduced in neutrophil-depleted rats. Extending these findings in rats, blocking C5a receptors also reduced zymosan- induced joint hypernociception in mice. Conclusions and implications: These results suggest that C5a is an important inflammatory hypernociceptive mediator, acting by a mechanism independent of hypernociceptive cytokine release, but dependent on the presence of neutrophils. Therefore, we suggest that inhibiting the action of C5a has therapeutic potential in the control of inflammatory pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of isoproterenol-induced myocardial damage is unknown, but a mismatch of oxygen supply vs. demand following coronary hypotension and myocardial hyperactivity is the best explanation for the complex morphological alterations observed. Severe alterations in the structural integrity of the sarcolemma of cardiomyocytes have been demonstrated to be caused by isoproterenol. Taking into account that the sarcolemmal integrity is stabilized by the dystrophin-glycoprotein complex (DGC) that connects actin and laminin in contractile machinery and extracellular matrix and by integrins, this study tests the hypothesis that isoproterenol affects sarcolemmal stability through changes in the DGC and integrins. We found different sensitivity of the DGC and integrin to isoproterenol subcutaneous administration. Immunofluorescent staining revealed that dystrophin is the most sensitive among the structures connecting the actin in the cardiomyocyte cytoskeleton and the extracellular matrix. The sarcomeric actin dissolution occurred after the reduction or loss of dystrophin. Subsequently, after lysis of myofilaments, gamma-sarcoglycan, beta-dystroglycan, beta 1-integrin, and laminin alpha-2 expressions were reduced followed by their breakdown, as epiphenomena of the myocytolytic process. In conclusion, administration of isoproterenol to rats results in primary loss of dystrophin, the most sensitive among the structural proteins that form the DGC that connects the extracellular matrix and the cytoskeleton in cardiomyocyte. These changes, related to ischaemic injury, explain the severe alterations in the structural integrity of the sarcolemma of cardiomyocytes and hence severe and irreversible injury induced by isoproterenol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose-Functional MRI is a powerful tool to investigate recovery of brain function in patients with stroke. An inherent assumption in functional MRI data analysis is that the blood oxygenation level-dependent (BOLD) signal is stable over the course of the examination. In this study, we evaluated the validity of such assumption in patients with chronic stroke. Methods-Fifteen patients performed a simple motor task with repeated epochs using the paretic and the unaffected hand in separate runs. The corresponding BOLD signal time courses were extracted from the primary and supplementary motor areas of both hemispheres. Statistical maps were obtained by the conventional General Linear Model and by a parametric General Linear Model. Results-Stable BOLD amplitude was observed when the task was executed with the unaffected hand. Conversely, the BOLD signal amplitude in both primary and supplementary motor areas was progressively attenuated in every patient when the task was executed with the paretic hand. The conventional General Linear Model analysis failed to detect brain activation during movement of the paretic hand. However, the proposed parametric General Linear Model corrected the misdetection problem and showed robust activation in both primary and supplementary motor areas. Conclusions-The use of data analysis tools that are built on the premise of a stable BOLD signal may lead to misdetection of functional regions and underestimation of brain activity in patients with stroke. The present data urge the use of caution when relying on the BOLD response as a marker of brain reorganization in patients with stroke. (Stroke. 2010; 41:1921-1926.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Schistosoma mansoni fatty acid binding protein (FABP), SmA, is a vaccine candidate against, S. mansoni and F hepatica. Previously, we demonstrated the importance of a correct fold to achieve protection in immunized animals after cercariae challenge [[10]. C.R.R. Ramos, R.C.R. Figueredo, T.A. Pertinhez, M.M. Vilar, A.L.T.O. Nascimento, M. Tendler, I. Raw, A. Spisni, P.L. Ho, Gene structure and M20T polymorphism of the Schistosoma mansoni Sm14 fatty acid-binding protein: structural, functional and immunoprotection analysis. J. Biol. Chem. 278 (2003) 12745-12751]. Here we show that the reduction of vaccine efficacy over time is due to protein dimerization and subsequent aggregation. We produced the mutants Sm14-M20(C62S) and Sm14M20(C62V) that, as expected, did not dimerize in SDS-PAGE. Molecular dynamics calculations and unfolding experiments highlighted a higher structural stability of these mutants with respect to the wild-type. In addition, we found that the mutated proteins, after thermal denaturation, refolded to their active native molecular architecture as proved by the recovery of the fatty acid binding ability. Sm14-M20(C62V) turned out to be the more stable form over time, providing the basis to determine the first 3D solution structure of a Sm14 protein in its apo-form. Overall, Sm14-M20(C62V) possesses an improved structural stability over time, an essential feature to preserve its immunization capability and, in experimentally immunized animals, it exhibits a protection effect against S. mansoni cercariae infections comparable to the one obtained with the wild-type protein. These facts indicate this protein as a good lead molecule for large-scale production and for developing an effective Sm14 based anti-helminthes vaccine. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed at an evaluation of the classical iodine method for quantification of vitamin C (L-ascorbic acid) in fruit juices, as well as at a search into the stability of this so popular vitamin under different conditions of pH, temperature and light exposition, in addition to a proposal of a new quantification method. Our results point to the persistent reversibility of the blue color of the starch-triiodide complex at the end point when using the classical iodine titration, and the overestimation of the true vitamin concentration in fruit juices. A new quantification method is proposed in order to overcome this problem. Surprising conclusions were obtained regarding the controversial stability of L-ascorbic acid toward atmospheric oxygen, at low pH, even in fruit juice and at room temperature, showing that the major problem concerned with aging of fruit juices is proliferation of microorganisms rather than expontaneous oxidation of L-ascorbic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to characterize the structure of the beak of Toco Toucan (Ramphastos toco) and to investigate means for arresting fractures in the rhinotheca using acrylic resin. The structure of the rhamphastid bill has been described as a sandwich structured composite having a thin exterior comprised of keratin and a thick foam core constructed of mineralized collagenous rods (trabeculae). The keratinous rhamphotheca consists of superposed polygonal scales (approximately 50 pm in diameter and 1 mu m in thickness). In order to simulate the orientation of loading to which the beak is subjected during exertion of bite force, for example, we conducted flexure tests on the dorso-ventral axis of the maxilla. The initially intact (without induced fracture) beak fractured in the central portion when subjected to a force of 270 N, at a displacement of 23 mm. The location of this fracture served as a reference for the fractures induced in other beaks tested. The second beak was fractured and repaired by applying resin on both lateral surfaces. The repaired maxilla sustained a force of 70 N with 6.5 mm deflection. The third maxilla was repaired similarly except that it was conditioned in acid for 60s prior to fixation with resin. It resisted a force of up to 63 N at 6 mm of deflection. The experimental results were compared with finite element calculations for unfractured beak in bending configuration. The repaired specimens were found to have strength equal to only one third of the intact beak. Finite element simulations allow visualization of how the beak system (sandwich shell and cellular core) sustains high flexural strength. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: This study evaluated mechanical properties of glass ionomer cements (GICs) used for atraumatic restorative treatment. Wear resistance, Knoop hardness (Kh), flexural (F(s)) and compressive strength (C(s)) were evaluated. The GICs used were Riva Self Cure (RVA), Fuji IX (FIX), Hi Dense (HD), Vitro Molar (VM), Maxxion R (MXR) and Ketac Molar Easymix (KME). Methods: Wear was evaluated after 1, 4, 63 and 365 days. Two-way ANOVA and Tukey post hoc tests (P = 0.05) analysed differences in wear of the GICs and the time effect. F(s), C(s), and Kh were analysed with one-way ANOVA. Results: The type of cement (p < 0.001) and the time (p < 0.001) had a significant effect on wear. In early-term wear and Kh, KME and FIX presented the best performance. In long-term wear, F(s) and C(s), KME, FIX and HD had the best performance. Strong explanatory power between F(s) and the Kh (r(2) = 0.85), C(s) and the Kh (r(2) = 0.82), long-term wear and F(s) of 24 h (r(2) = 0.79) were observed. Conclusions: The data suggested that KME and FIX presented the best in vitro performance. HD showed good results except for early-term wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. This study evaluated the effect of composite pre-polymerization temperature and energy density on the marginal adaptation (MA), degree of conversion (DC), flexural strength (FS), and polymer cross-linking (PCL) of a resin composite (Filtek Z350, 3M/ESPE). Methods. For MA, class V cavities (4mmx2mmx2mm) were prepared in 40 bovine incisors. The adhesive system Adper Single Bond 2 (3M/ESPE) was applied. Before being placed in the cavities, the resin composite was either kept at room-temperature (25 degrees C) or previously pre-heated to 68 degrees C in the Calset (TM) device (AdDent Inc., Danbury, CT, USA). The composite was then light polymerized for 20 or 40s at 600mW/cm(2) (12 or 24 J/cm(2), respectively). The percentage of gaps was analyzed by scanning electron microscopy, after sectioning the restorations and preparing epoxy resin replicas. DC (n = 3) was obtained by FT-Raman spectroscopy on irradiated and non-irradiated composite surfaces. FS (n = 10) was measured by the three-point-bending test. KHN (n = 6) was measured after 24h dry storage and again after immersion in 100% ethanol solution for 24 h, to calculate PCL density. Data were analyzed by appropriate statistical analyses. Results. The pre-heated composite showed better MA than the room-temperature groups. A higher number of gaps were observed in the room-temperature groups, irrespective of the energy density, mainly in the axial wall (p < 0.05). Composite pre-heating and energy density did not affect the DC, FS and PCL (p > 0.05). Significance. Pre-heating the composite prior to light polymerization similar in a clinical situation did not alter the mechanical properties and monomer conversion of the composite, but provided enhanced composite adaptation to cavity walls. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the influence of different ion-exchange temperatures on the biaxial flexural strength (sigma(f)), hardness (HV) and indentation fracture resistance (K(IF)) of a dental porcelain. Disk-shaped specimens were divided into five groups (n = 10) and submitted to an ion-exchange procedure using KNO(3) paste for 15 min in the following temperatures (degrees C); (I) 430; (II) 450; (III) 470; (IV) 490; (V) 510; and control (no ion exchange). The value of sigma(f) was determined in artificial saliva at 37 degrees C. The values of HV and K(IF) were obtained using 3 Vickers indentations in each specimen (19.6 N). Results showed that ion exchange increases significantly the properties of the material as compared to the control and no significant differences were found among the temperatures tested for any of the properties studied. (C) 2010 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To characterize the interaction of 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide Hydrochloride (EDC) with dentin matrix and its effect on the resin-dentin bond. Methods: Changes to the stiffness of demineralized dentin fragments treated with EDC/N-hydroxysuccinimide (NHS) in different solutions were evaluated at different time points. The resistance against enzymatic degradation was indirectly evaluated by ultimate tensile strength (UTS) test of demineralized dentin treated or not with EDC/NHS and subjected to collagenase digestion. Short- and long-term evaluations of the strength of resin-dentin interfaces treated with EDC/NHS for 1 h were performed using microtensile bond strength (mu TBS) test. All data (MPa) were individually analyzed using ANOVA and Tukey HSD tests (alpha = 0.05). Results: The different exposure times significantly increased the stiffness of dentin (p < 0.0001, control-5.15 and EDC/NHS-29.50), while no differences were observed among the different solutions of EDC/NHS (p = 0.063). Collagenase challenge did not affect the UTS values of EDC/NHS group (6.08) (p > 0.05), while complete degradation was observed for the control group (p = 0.0008, control-20.84 and EDC/NHS-43.15). EDC/NHS treatment did not significantly increase resin-dentin mu TBS, but the values remained stable after 12 months water storage (p < 0.05). Conclusions: Biomimetic use of EDC/NHS to induce exogenous collagen cross-links resulted in increased mechanical properties and stability of dentin matrix and dentin-resin interfaces. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 250-255, 2010.