893 resultados para lumped-element filter
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Les eines 2.0 amplien les possibilitats de la didàctica centrada en l'estudiant del segle XXI en àmbits com el literari. El Wordle és una aplicació informàtica que, a partir d'un text, genera "grapats de paraules" amb les mida de la paraula d'acord amb la seva freqüència d'ús dins el text. Una obra literària té una composició en parts i cada part utilitza unes paraules que el Wordle aplega. La visió conjunta dels grapats de paraules es un indicador de la importància dels conceptes i pot ajudar a analitzar la trama
Resumo:
This paper reviews a study to investigate how a hearing impaired person can learn to discriminate speech distorted by a low pass filter in a sensory aid.
Resumo:
This paper reviews a study to investigate how a hearing impaired person can learn to discriminate speech distorted by a low pass filter in a sensory aid.
Resumo:
The motion of a car is described using a stochastic model in which the driving processes are the steering angle and the tangential acceleration. The model incorporates exactly the kinematic constraint that the wheels do not slip sideways. Two filters based on this model have been implemented, namely the standard EKF, and a new filter (the CUF) in which the expectation and the covariance of the system state are propagated accurately. Experiments show that i) the CUF is better than the EKF at predicting future positions of the car; and ii) the filter outputs can be used to control the measurement process, leading to improved ability to recover from errors in predictive tracking.
Resumo:
A driver controls a car by turning the steering wheel or by pressing on the accelerator or the brake. These actions are modelled by Gaussian processes, leading to a stochastic model for the motion of the car. The stochastic model is the basis of a new filter for tracking and predicting the motion of the car, using measurements obtained by fitting a rigid 3D model to a monocular sequence of video images. Experiments show that the filter easily outperforms traditional filters.
Resumo:
In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.
Resumo:
We have developed an ensemble Kalman Filter (EnKF) to estimate 8-day regional surface fluxes of CO2 from space-borne CO2 dry-air mole fraction observations (XCO2) and evaluate the approach using a series of synthetic experiments, in preparation for data from the NASA Orbiting Carbon Observatory (OCO). The 32-day duty cycle of OCO alternates every 16 days between nadir and glint measurements of backscattered solar radiation at short-wave infrared wavelengths. The EnKF uses an ensemble of states to represent the error covariances to estimate 8-day CO2 surface fluxes over 144 geographical regions. We use a 12×8-day lag window, recognising that XCO2 measurements include surface flux information from prior time windows. The observation operator that relates surface CO2 fluxes to atmospheric distributions of XCO2 includes: a) the GEOS-Chem transport model that relates surface fluxes to global 3-D distributions of CO2 concentrations, which are sampled at the time and location of OCO measurements that are cloud-free and have aerosol optical depths <0.3; and b) scene-dependent averaging kernels that relate the CO2 profiles to XCO2, accounting for differences between nadir and glint measurements, and the associated scene-dependent observation errors. We show that OCO XCO2 measurements significantly reduce the uncertainties of surface CO2 flux estimates. Glint measurements are generally better at constraining ocean CO2 flux estimates. Nadir XCO2 measurements over the terrestrial tropics are sparse throughout the year because of either clouds or smoke. Glint measurements provide the most effective constraint for estimating tropical terrestrial CO2 fluxes by accurately sampling fresh continental outflow over neighbouring oceans. We also present results from sensitivity experiments that investigate how flux estimates change with 1) bias and unbiased errors, 2) alternative duty cycles, 3) measurement density and correlations, 4) the spatial resolution of estimated flux estimates, and 5) reducing the length of the lag window and the size of the ensemble. At the revision stage of this manuscript, the OCO instrument failed to reach its orbit after it was launched on 24 February 2009. The EnKF formulation presented here is also applicable to GOSAT measurements of CO2 and CH4.
Resumo:
The Robert–Asselin time filter is widely used in numerical models of weather and climate. It successfully suppresses the spurious computational mode associated with the leapfrog time-stepping scheme. Unfortunately, it also weakly suppresses the physical mode and severely degrades the numerical accuracy. These two concomitant problems are shown to occur because the filter does not conserve the mean state, averaged over the three time slices on which it operates. The author proposes a simple modification to the Robert–Asselin filter, which does conserve the three-time-level mean state. When used in conjunction with the leapfrog scheme, the modification vastly reduces the impacts on the physical mode and increases the numerical accuracy for amplitude errors by two orders, yielding third-order accuracy. The modified filter could easily be incorporated into existing general circulation models of the atmosphere and ocean. In principle, it should deliver more faithful simulations at almost no additional computational expense. Alternatively, it may permit the use of longer time steps with no loss of accuracy, reducing the computational expense of a given simulation.