943 resultados para loop closure
Resumo:
The transverse broadening of an energetic jet passing through a non-Abelian plasma is believed to be described by the thermal expectation value of a light-cone Wilson loop. In this exploratory study, we measure the light-cone Wilson loop with classical lattice gauge theory simulations. We observe, as suggested by previous studies, that there are strong interactions already at short transverse distances, which may lead to more efficient jet quenching than in leading-order perturbation theory. We also verify that the asymptotics of the Wilson loop do not change qualitatively when crossing the light cone, which supports arguments in the literature that infrared contributions to jet quenching can be studied with dimensionally reduced simulations in the space-like domain. Finally we speculate on possibilities for full four-dimensional lattice studies of the same observable, perhaps by employing shifted boundary conditions in order to simulate ensembles boosted by an imaginary velocity.
Resumo:
When considering NLO corrections to thermal particle production in the “relativistic” regime, in which the invariant mass squared of the produced particle is K2 ~ (πT)2, then the production rate can be expressed as a sum of a few universal “master” spectral functions. Taking the most complicated 2-loop master as an example, a general strategy for obtaining a convergent 2-dimensional integral representation is suggested. The analysis applies both to bosonic and fermionic statistics, and shows that for this master the non-relativistic approximation is only accurate for K2 ~(8πT)2, whereas the zero-momentum approximation works surprisingly well. Once the simpler masters have been similarly resolved, NLO results for quantities such as the right-handed neutrino production rate from a Standard Model plasma or the dilepton production rate from a QCD plasma can be assembled for K2 ~ (πT)2.
Resumo:
The extraction of the finite temperature heavy quark potential from lattice QCD relies on a spectral analysis of the Wilson loop. General arguments tell us that the lowest lying spectral peak encodes, through its position and shape, the real and imaginary parts of this complex potential. Here we benchmark this extraction strategy using leading order hard-thermal loop (HTL) calculations. In other words, we analytically calculate the Wilson loop and determine the corresponding spectrum. By fitting its lowest lying peak we obtain the real and imaginary parts and confirm that the knowledge of the lowest peak alone is sufficient for obtaining the potential. Access to the full spectrum allows an investigation of spectral features that do not contribute to the potential but can pose a challenge to numerical attempts of an analytic continuation from imaginary time data. Differences in these contributions between the Wilson loop and gauge fixed Wilson line correlators are discussed. To better understand the difficulties in a numerical extraction we deploy the maximum entropy method with extended search space to HTL correlators in Euclidean time and observe how well the known spectral function and values for the real and imaginary parts are reproduced. Possible venues for improvement of the extraction strategy are discussed.
Resumo:
BACKGROUND Contagious Bovine Pleuropneumonia (CBPP) is the most important chronic pulmonary disease of cattle on the African continent causing severe economic losses. The disease, caused by infection with Mycoplasma mycoides subsp. mycoides is transmitted by animal contact and develops slowly into a chronic form preventing an early clinical diagnosis. Because available vaccines confer a low protection rate and short-lived immunity, the rapid diagnosis of infected animals combined with traditional curbing measures is seen as the best way to control the disease. While traditional labour-intensive bacteriological methods for the detection of M. mycoides subsp. mycoides have been replaced by molecular genetic techniques in the last two decades, these latter approaches require well-equipped laboratories and specialized personnel for the diagnosis. This is a handicap in areas where CBPP is endemic and early diagnosis is essential. RESULTS We present a rapid, sensitive and specific diagnostic tool for M. mycoides subsp. mycoides detection based on isothermal loop-mediated amplification (LAMP) that is applicable to field conditions. The primer set developed is highly specific and sensitive enough to diagnose clinical cases without prior cultivation of the organism. The LAMP assay detects M. mycoides subsp. mycoides DNA directly from crude samples of pulmonary/pleural fluids and serum/plasma within an hour using a simple dilution protocol. A photometric detection of LAMP products allows the real-time visualisation of the amplification curve and the application of a melting curve/re-association analysis presents a means of quality assurance based on the predetermined strand-inherent temperature profile supporting the diagnosis. CONCLUSION The CBPP LAMP developed in a robust kit format can be run on a battery-driven mobile device to rapidly detect M. mycoides subsp. mycoides infections from clinical or post mortem samples. The stringent innate quality control allows a conclusive on-site diagnosis of CBPP such as during farm or slaughter house inspections.
Resumo:
CASE DESCRIPTION A 7-year-old 573-kg (1,261 -lb) Swiss Warmblood gelding was evaluated because of signs of acute abdominal pain. CLINICAL FINDINGS Physical examination revealed a markedly distended abdomen with subjectively reduced borborygmi in all abdominal quadrants. A large, gas-distended viscus was present at the pelvic brim preventing complete palpation of the abdomen per rectum. Ultrasonographic evaluation could not be safely performed in the initial evaluation because of severe signs of abdominal pain. TREATMENT AND OUTCOME Ventral midline celiotomy was performed, and right dorsal displacement of the ascending colon was corrected. Progressive signs of abdominal pain after surgery prompted repeat ventral midline celiotomy, and small intestinal incarceration in a large, radial mesojejunal rent was detected. The incarceration was reduced, but the defect was not fully accessible for repair via the celiotomy. Repair of the mesenteric defect was not attempted, and conservative management was planned after surgery; however, signs of colic returned. A standard laparoscopic approach was attempted from both flanks in the standing patient, but the small intestine could not be adequately mobilized for full evaluation of the rent. Hand-assisted laparoscopic surgery (HALS) allowed identification and reduction of jejunal incarceration and repair of the mesenteric rent. Although minor ventral midline incisional complications were encountered, the horse recovered fully. CLINICAL RELEVANCE HALS techniques should be considered for repair of mesenteric rents in horses. In the horse of this report, HALS facilitated identification, evaluation, and repair of a large radial mesenteric rent that was not accessible from a ventral median celiotomy.
Resumo:
OBJECTIVE The Coherex-EU Study evaluated the safety and efficacy of PFO closure utilizing novel in-tunnel PFO closure devices. BACKGROUND Transcatheter closure of patent foramen ovale (PFO) followed the development of transcatheter closure devices designed to patch atrial septal defects (ASDs). The Coherex FlatStent™ and FlatStent™ EF devices were designed specifically to treat PFO anatomy. METHODS A total of 95 patients with a clinical indication for PFO closure were enrolled in a prospective, multicenter first in man study at six clinical sites. Thirty-six patients received the first-generation FlatStent study device, and 57 patients received the second-generation FlatStent EF study device, which was modified based on clinical experience during the first 38 cases. Two patients enrolled to receive the first generation did not receive a device. RESULTS At 6 months post-procedure, 45% (17/38) of the intention-to-treat (ITT) cohort receiving the first-generation FlatStent device had complete closure, 26% (10/38) had a trivial residual shunt, and 29% (11/38) had a moderate to large residual shunt. In the ITT cohort receiving the second-generation FlatStent EF device, 76% (43/57) had complete closure, 12% (7/57) had a trivial shunt, and 12% had a moderate to large shunt. Five major adverse events occurred, all without sequelae. CONCLUSION This initial study of the Coherex FlatStent/FlatStent EF PFO Closure System demonstrated the potential for in-tunnel PFO closure. The in-tunnel Coherex FlatStent EF may offer an alternative to septal repair devices for PFO closure in appropriately selected patients; however, further investigation will be necessary to establish the best use of this device.
Resumo:
The multiple high-pressure (HP), low-temperature (LT) metamorphic units of Western and Central Anatolia offer a great opportunity to investigate the subduction- and continental accretion-related evolution of the eastern limb of the long-lived Aegean subduction system. Recent reports of the HP–LT index mineral Fe-Mg-carpholite in three metasedimentary units of the Gondwana-derived Anatolide–Tauride continental block (namely the Afyon Zone, the Ören Unit and the southern Menderes Massif) suggest a more complicated scenario than the single-continental accretion model generally put forward in previous studies. This study presents the first isotopic dates (white mica 40Ar–39Ar geochronology), and where possible are combined with P–T estimates (chlorite thermometry, phengite barometry, multi-equilibrium thermobarometry), on carpholite-bearing rocks from these three HP–LT metasedimentary units. It is shown that, in the Afyon Zone, carpholite-bearing assemblages were retrogressed through greenschist-facies conditions at c. 67–62 Ma. Early retrograde stages in the Ören Unit are dated to 63–59 Ma. In the Kurudere–Nebiler Unit (HP Mesozoic cover of the southern Menderes Massif), HP retrograde stages are dated to c. 45 Ma, and post-collisional cooling to c. 26 Ma. These new results support that the Ören Unit represents the westernmost continuation of the Afyon Zone, whereas the Kurudere–Nebiler Unit correlates with the Cycladic Blueschist Unit of the Aegean Domain. In Western Anatolia, three successive HP–LT metamorphic belts thus formed: the northernmost Tavşanlı Zone (c. 88–82 Ma), the Ören–Afyon Zone (between 70 and 65 Ma), and the Kurudere–Nebiler Unit (c. 52–45 Ma). The southward younging trend of the HP–LT metamorphism from the upper and internal to the deeper and more external structural units, as in the Aegean Domain, points to the persistence of subduction in Western Anatolia between 93–90 and c. 35 Ma. After the accretion of the Menderes–Tauride terrane, in Eocene times, subduction stopped, leading to continental collision and associated Barrovian-type metamorphism. Because, by contrast, the Aegean subduction did remain active due to slab roll-back and trench migration, the eastern limb (below Southwestern Anatolia) of the Hellenic slab was dramatically curved and consequently teared. It therefore is suggested that the possibility for subduction to continue after the accretion of buoyant (e.g. continental) terranes probably depends much on palaeogeography.
Resumo:
Introduction This prospective nonrandomized study compared the safety and efficacy of a novel arterial closure device (ACD) in common femoral artery procedures to that of the FDA submitted historical manual pressure control group, who underwent either a diagnostic angiogram (DA) or a percutaneous coronary intervention (PCI) procedure. Methods and Results A total of 55 patients were enrolled in this study of the novel ACD. Of the 55 patients, 39 were enrolled in the DA group and 16 were enrolled in the PCI group. Six patients were excluded. A device was deployed in 49 patients. Time to hemostasis (TTH), time to ambulation (TTA), device function, and device-related vascular complications were measured. In the device group, the TTH for the combined DA and PCI patients was 32 seconds (0.54 ± 0.93 minutes), significantly lower when compared with 16.0 ± 12.2 minutes (P < 0.0001) for the control group. Overall major vascular complication rate did not differ significantly, device group (1/49) and the historical control group (1/217). TTA in the combined PCI and DA device group was 226.4 ± 231.9 at the German site (site ambulation policy). In the Irish site, the average TTA in the PCI group was 187 minutes (n = 8) and 85 minutes (n = 14) in the DA group. Conclusion The Celt ACD® device is safe, effective, and significantly decreases the TTH compared to manual pressure and has a low vascular complications rate. The device may be effective in early ambulation and discharge of patients postcoronary intervention procedures.