480 resultados para infrabuccal pellet


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The matrices in which Multi Walled Carbon Nanotubes (MWCNTs) are incorporated to produce composites with improved electrical properties can be polymer, metal or metal oxide. Most composites containing CNTs are polymer based because of its flexibility in fabrication. Very few investigations have been focused on CNT-metal composites due to fabrication difficulties, such as achievement of homogeneous distribution of MWCNTs and poor interfacial bonding between MWCNTs and the metal matrix. In an effort to overcome poor interfacial bonding for the Cu - MWCNT composite, silver (Ag) and nickel (Ni) resinates have been incorporated in the ball milling stage. Composites of MWCNT (16, 12, and 8 Vol %) - Cu+Ag+Ni were pelleted at 20,000 psi (669.4 Mpa) and sintered at 950 °C. The electrical conductivity results measured by four probe meter showed that the conductivity decreases with increase in the porosity. Moreover from these results it can also be stated that an addition of optimum value of (12 Vol %) MWCNT leads to high electrical conductivity (9.26E+07 s-m"), which is 50% greater than the conductivity of Cu. It is anticipated that the conductivity can be increased substantially with hot isostatic pressing of the pellet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypotheses of origin of ocean deep red clays are under discussion. On an example of the Pacific Ocean grain size, mineralogy and chemical composition of clays are considered. It is shown that they formed from atmospheric dust and andesite pyroclastics. Accumulation of the clays occurred through deposition particle-by-particle and by pellet transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feed characteristics may influence the bacterial community composition and metabolic activities in the pig gastrointestinal tract, known to be associated with positive effects on the gut. Use of mash feed is associated with reduced Salmonella excretion, but little is known of its effect on the Escherichia coli population or of the mechanism of action. Our objectives were to assess the effect of feed texture combined with feed particle size on VFA profiles and levels, total E. coli count, and the presence of genes encoding virulence factors of pathogenic E. coli strains in the digestive tract along with their impact on pig performance of fattening pigs. Pigs (n = 840) on a commercial farm received mash or pellet diets of different particle sizes during the fattening period. Caecal and colon contents from 164 pigs were sampled at the slaughterhouse for enumeration of E. coli by quantitative PCR (qPCR) and for VFA quantification by capillary gas chromatography. The yccT gene was used to enumerate total E. coli. Improved pig performances associated with pellet texture and a 500-μm size were observed. Caecal (P = 0.02) and colon (P < 0.01) propionic acid concentrations were lower for pigs receiving pellet rather than mash feed. Similarly, caecal (P = 0.01) and colon (P < 0.001) butyric acid concentrations were also lower for pigs receiving pellet rather than mash feed, as determined by capillary gas chromatography. Moreover, caecal (P = 0.03) and colon (P < 0.001) butyric acid concentrations were higher for pigs receiving a feed with a 1,250-μm particle size rather than a 500-μm particle size. On the other hand, total caecal and colon E. coli levels were higher for pigs receiving pellet feed than for those receiving mash feed. For total E. coli enumeration, caecal (P < 0.01) and colon (P < 0.01) yccT gene copies were higher for pigs receiving pellet rather than mash feed. No effect of particle size on fatty acid concentrations or on E. coli numbers was observed. Virulence gene quantification revealed no trend. Taken together, results showed that mash feed is associated with lower growth performance but with favorable intestinal changes linked to VFA levels and E. coli reduction in the intestine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rise of the twenty-first century has seen the further increase in the industrialization of Earth’s resources, as society aims to meet the needs of a growing population while still protecting our environmental and natural resources. The advent of the industrial bioeconomy – which encompasses the production of renewable biological resources and their conversion into food, feed, and bio-based products – is seen as an important step in transition towards sustainable development and away from fossil fuels. One sector of the industrial bioeconomy which is rapidly being expanded is the use of biobased feedstocks in electricity production as an alternative to coal, especially in the European Union.

As bioeconomy policies and objectives increasingly appear on political agendas, there is a growing need to quantify the impacts of transitioning from fossil fuel-based feedstocks to renewable biological feedstocks. Specifically, there is a growing need to conduct a systems analysis and potential risks of increasing the industrial bioeconomy, given that the flows within it are inextricably linked. Furthermore, greater analysis is needed into the consequences of shifting from fossil fuels to renewable feedstocks, in part through the use of life cycle assessment modeling to analyze impacts along the entire value chain.

To assess the emerging nature of the industrial bioeconomy, three objectives are addressed: (1) quantify the global industrial bioeconomy, linking the use of primary resources with the ultimate end product; (2) quantify the impacts of the expaning wood pellet energy export market of the Southeastern United States; (3) conduct a comparative life cycle assessment, incorporating the use of dynamic life cycle assessment, of replacing coal-fired electricity generation in the United Kingdom with wood pellets that are produced in the Southeastern United States.

To quantify the emergent industrial bioeconomy, an empirical analysis was undertaken. Existing databases from multiple domestic and international agencies was aggregated and analyzed in Microsoft Excel to produce a harmonized dataset of the bioeconomy. First-person interviews, existing academic literature, and industry reports were then utilized to delineate the various intermediate and end use flows within the bioeconomy. The results indicate that within a decade, the industrial use of agriculture has risen ten percent, given increases in the production of bioenergy and bioproducts. The underlying resources supporting the emergent bioeconomy (i.e., land, water, and fertilizer use) were also quantified and included in the database.

Following the quantification of the existing bioeconomy, an in-depth analysis of the bioenergy sector was conducted. Specifically, the focus was on quantifying the impacts of the emergent wood pellet export sector that has rapidly developed in recent years in the Southeastern United States. A cradle-to-gate life cycle assessment was conducted in order to quantify supply chain impacts from two wood pellet production scenarios: roundwood and sawmill residues. For reach of the nine impact categories assessed, wood pellet production from sawmill residues resulted in higher values, ranging from 10-31% higher.

The analysis of the wood pellet sector was then expanded to include the full life cycle (i.e., cradle-to-grave). In doing to, the combustion of biogenic carbon and the subsequent timing of emissions were assessed by incorporating dynamic life cycle assessment modeling. Assuming immediate carbon neutrality of the biomass, the results indicated an 86% reduction in global warming potential when utilizing wood pellets as compared to coal for electricity production in the United Kingdom. When incorporating the timing of emissions, wood pellets equated to a 75% or 96% reduction in carbon dioxide emissions, depending upon whether the forestry feedstock was considered to be harvested or planted in year one, respectively.

Finally, a policy analysis of renewable energy in the United States was conducted. Existing coal-fired power plants in the Southeastern United States were assessed in terms of incorporating the co-firing of wood pellets. Co-firing wood pellets with coal in existing Southeastern United States power stations would result in a nine percent reduction in global warming potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feed characteristics may influence the bacterial community composition and metabolic activities in the pig gastrointestinal tract, known to be associated with positive effects on the gut. Use of mash feed is associated with reduced Salmonella excretion, but little is known of its effect on the Escherichia coli population or of the mechanism of action. Our objectives were to assess the effect of feed texture combined with feed particle size on VFA profiles and levels, total E. coli count, and the presence of genes encoding virulence factors of pathogenic E. coli strains in the digestive tract along with their impact on pig performance of fattening pigs. Pigs (n = 840) on a commercial farm received mash or pellet diets of different particle sizes during the fattening period. Caecal and colon contents from 164 pigs were sampled at the slaughterhouse for enumeration of E. coli by quantitative PCR (qPCR) and for VFA quantification by capillary gas chromatography. The yccT gene was used to enumerate total E. coli. Improved pig performances associated with pellet texture and a 500-μm size were observed. Caecal (P = 0.02) and colon (P < 0.01) propionic acid concentrations were lower for pigs receiving pellet rather than mash feed. Similarly, caecal (P = 0.01) and colon (P < 0.001) butyric acid concentrations were also lower for pigs receiving pellet rather than mash feed, as determined by capillary gas chromatography. Moreover, caecal (P = 0.03) and colon (P < 0.001) butyric acid concentrations were higher for pigs receiving a feed with a 1,250-μm particle size rather than a 500-μm particle size. On the other hand, total caecal and colon E. coli levels were higher for pigs receiving pellet feed than for those receiving mash feed. For total E. coli enumeration, caecal (P < 0.01) and colon (P < 0.01) yccT gene copies were higher for pigs receiving pellet rather than mash feed. No effect of particle size on fatty acid concentrations or on E. coli numbers was observed. Virulence gene quantification revealed no trend. Taken together, results showed that mash feed is associated with lower growth performance but with favorable intestinal changes linked to VFA levels and E. coli reduction in the intestine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The taxonomic composition and types of particles comprising the downward particle flux were examined during the mesoscale artificial iron fertilisation experiment LOHAFEX. The experiment was conducted in low-silicate waters of the Atlantic Sector of the Southern Ocean during austral summer (January-March 2009), and induced a bloom dominated by small flagellates. Downward particle flux was low throughout the experiment, and not enhanced by addition of iron; neutrally buoyant sediment traps contained mostly faecal pellets and faecal material apparently reprocessed by mesozooplankton. TEP fluxes were low, <5 mg GX eq/m**2/day, and a few phytodetrital aggregates were found in the sediment traps. Only a few per cent of the POC flux was found in the traps consisting of intact protist plankton, although remains of taxa with hard body parts (diatoms, tintinnids, thecate dinoflagellates and foraminifera) were numerous, far more so than intact specimens of these taxa. Nevertheless, many small flagellates and coccoid cells, belonging to the pico- and nanoplankton, were found in the traps, and these small, soft-bodied cells probably contributed the majority of downward POC flux via mesozooplankton grazing and faecal pellet export. TEP likely played an important role by aggregating these small cells, and making them more readily available to mesozooplankton grazers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-series sediment traps were deployed at 4 depths in the eastern Fram Strait from July 2007 to June 2008 to investigate variations in the magnitude and composition of the sinking particulate matter from upper waters to the seafloor. Sediment traps were deployed at 196 m in the Atlantic Water layer, at 1296 and 2364 m in the intermediate and deep waters, and at 2430 m on a benthic lander in the near-bottom layer. Fluxes of total particulate matter, particulate organic carbon, particulate organic nitrogen, biogenic matter, lithogenic matter, biogenic particulate silica, calcium carbonate, dominant phytoplankton cells, and zooplankton fecal pellets increased with depth, indicating the importance of lateral advection on fluxes in the deep Fram Strait. The lateral supply of particulate matter was further supported by the constant fluxes of biomarkers such as brassicasterol, alkenones, campesterol, beta-sitosterol, and IP25 at all depths sampled. However, enhanced fluxes of diatoms and appendicularian fecal pellets from the upper waters to the seafloor in the presence of ice during spring indicated the rapid export (15-35 days) of locally-produced large particles that likely contributed most of the food supply to the benthic communities. These results show that lateral supply and downward fluxes are both important processes influencing the transport of particulate matter to the seafloor in the deep eastern Fram Strait, and that particulate matter size dictates the prevailing sinking process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A critical question regarding the organic carbon cycle in the Arctic Ocean is whether the decline in ice extent and thickness and the associated increase in solar irradiance in the upper ocean will result in increased primary production and particulate organic carbon (POC) export. To assess spatial and temporal variability in POC export, under-ice export fluxes were measured with short-term sediment traps in the northern Laptev Sea in July-August-September 1995, north of the Fram Strait in July 1997, and in the Central Arctic in August-September 2012. Sediment traps were deployed at 2-5 m and 20-25 m under ice for periods ranging from 8.5 to 71 h. In addition to POC fluxes, total particulate matter, chlorophyll a, biogenic particulate silica, phytoplankton, and zooplankton fecal pellet fluxes were measured to evaluate the amount and composition of the material exported in the upper Arctic Ocean. Whereas elevated export fluxes observed on and near the Laptev Sea shelf were likely the combined result of high primary production, resuspension, and release of particulate matter from melting ice, low export fluxes above the central basins despite increased light availability during the record minimum ice extent of 2012 suggest that POC export was limited by nutrient supply during summer. These results suggest that the ongoing decline in ice cover affects export fluxes differently on Arctic shelves and over the deep Arctic Ocean and that POC export is likely to remain low above the central basins unless additional nutrients are supplied to surface waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aquaculture growth has intensified the need for a diversification of nutritionally appropriate aquafeed ingredients. The purpose of this study was to evaluate Spirulina, a blue-green microalgae, and soybean meal as the sole protein sources in grow-out Tilapia diets. We constructed 3 experimental diets with soybean meal and 0,15, 30, and 45% Spirulina (SBM, SP15, SP30, and SP45 respectively) as their main protein sources. We compared these diets to a commercial Tilapia diet (CC). Additionally, to evaluate the benefit of fishmeal inclusion, fishmeal was added (2 and 10%) to the most successful Spirulina containing diet (FM2, FM10). We evaluated these experimental diets based on their physical properties, palatability, growth potential, waste production, and overall cost. No significant differences in growth performance were found between any of the diets. Total ammonia nitrogen (TAN) and total phosphorus (TP) levels in each tank were significantly affected by diet (p<0.05). CC had significantly higher TP than the experimental diets and SP15 had significantly higher TAN than the other diets. Only CC was found to be significantly more palatable than the experimental diets, and Spirulina inclusion was inversely correlated to pellet stability. Lastly, SP15 was the most profitable experimental diet. We recommend eliminating fishmeal from grow-out Tilapia diets in favour of soybean meal and Spirulina. Spirulina should, however, be limited to 15% to avoid the negative effects it has on stability and profitability, and its possible effect on feed intake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recently developed novel biomass fuel pellet, the Q’ Pellet, offers significant improvements over conventional white pellets, with characteristics comparable to those of coal. The Q’ Pellet was initially created at bench scale using a proprietary die and punch design, in which the biomass was torrefied in-situ¬ and then compressed. To bring the benefits of the Q’ Pellet to a commercial level, it must be capable of being produced in a continuous process at a competitive cost. A prototype machine was previously constructed in a first effort to assess continuous processing of the Q’ Pellet. The prototype torrefied biomass in a separate, ex-situ reactor and transported it into a rotary compression stage. Upon evaluation, parts of the prototype were found to be unsuccessful and required a redesign of the material transport method as well as the compression mechanism. A process was developed in which material was torrefied ex-situ and extruded in a pre-compression stage. The extruded biomass overcame multiple handling issues that had been experienced with un-densified biomass, facilitating efficient material transport. Biomass was extruded directly into a novel re-designed pelletizing die, which incorporated a removable cap, ejection pin and a die spring to accommodate a repeatable continuous process. Although after several uses the die required manual intervention due to minor design and manufacturing quality limitations, the system clearly demonstrated the capability of producing the Q’ Pellet in a continuous process. Q’ Pellets produced by the pre-compression method and pelletized in the re-designed die had an average dry basis gross calorific value of 22.04 MJ/kg, pellet durability index of 99.86% and dried to 6.2% of its initial mass following 24 hours submerged in water. This compares well with literature results of 21.29 MJ/kg, 100% pellet durability index and <5% mass increase in a water submersion test. These results indicate that the methods developed herein are capable of producing Q’ Pellets in a continuous process with fuel properties competitive with coal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change is expected to have marked impacts on forest ecosystems. In Ontario forests, this includes changes in tree growth, stand composition and disturbance regimes, with expected impacts on many forest-dependent communities, the bioeconomy, and other environmental considerations. In response to climate change, renewable energy systems, such as forest bioenergy, are emerging as critical tools for carbon emissions reductions and climate change mitigation. However, these systems may also need to adapt to changing forest conditions. Therefore, the aim of this research was to estimate changes in forest growth and forest cover in response to anticipated climatic changes in the year 2100 in Ontario forests, to ultimately explore the sustainability of bioenergy in the future. Using the Haliburton Forest and Wildlife Reserve in Ontario as a case study, this research used a spatial climate analog approach to match modeled Haliburton temperature and precipitation (via Fourth Canadian Regional Climate Model) to regions currently exhibiting similar climate (climate analogs). From there, current forest cover and growth rates of core species in Haliburton were compared to forests plots in analog regions from the US Forest Service Forest Inventory and Analysis (FIA). This comparison used two different emission scenarios, corresponding to a high and a mid-range emission future. This research then explored how these changes in forests may influence bioenergy feasibility in the future. It examined possible volume availability and composition of bioenergy feedstock under future conditions. This research points to a potential decline of softwoods in the Haliburton region with a simultaneous expansion of pre-established hardwoods such as northern red oak and red maple, as well as a potential loss in sugar maple cover. From a bioenergy perspective, hardwood residues may be the most feasible feedstock in the future with minimal change in biomass availability for energy production; under these possible conditions, small scale combined heat and power (CHP) and residential pellet use may be the most viable and ecologically sustainable options. Ultimately, understanding the way in which forests may change is important in informing meaningful policy and management, allowing for improved forest bioenergy systems, now and in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schedule-Induced Polydipsia (SIP) is an animal model of adjunctive drinking induced when a hungry rat receives food on a fixed interval of time. This model has been implemented as a model of compulsive behaviour and may represent a powerful tool to understand the neural mechanisms of compulsion. The bed nucleus of the stria terminalis (BNST) is thought to translate challenges to energy homeostasis into consummatory behaviours, and is therefore likely to contribute to drinking behaviours displayed by food restricted rats in the SIP paradigm. Furthermore, the BNST seems implicated in various compulsive behaviors, including compulsive water drinking in rats. Therefore, the goal of this project was to determine whether compulsive drinking in the SIP paradigm was associated with alterations in transmission at oval BNST (ovBNST) synapses. Rats undergoing the SIP procedure had restricted food access (1-hours/day) for a total of 29 days. After 7 days of food restriction and for the next 21 consecutive days, the rats had daily 2-hour access to operant conditioning chambers where they were presented with a 45-mg food pellet every minute. Water consumed during these 2-hour sessions was measured and the rats that drank 15 ml or more water for a minimum of 3 consecutive days were considered High Drinkers (HD; n=17) or otherwise, Low Drinkers (LD; n=13). Brain slices whole-cell patch clamp recordings conducted 18-hours after the last SIP training showed that chronic food restriction changed low frequency stimulation (LFS) - induced long-term potentiation of ovBNST inhibitory synaptic transmission (iLTP) into LFS - induced long-term depression (iLTD) in a majority of neurons, regardless of drinking behaviours. However, ad libitum access to food between the last day of SIP training and brain slice recordings (18-hour refeed) rescued LFS-induced iLTP in LD but not in HD, suggesting that impaired bi-directional plasticity of ovBNST synapses may contribute to compulsive drinking in the SIP paradigm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. Concerning the areas of applications, automobile, aeronautics, naval and even nuclear, the characteristics of these materials should be strictly controlled. In the nuclear area, ceramics are of great importance once they are the nuclear fuel pellets and must have, among other features, a well controlled porosity due to mechanical strength and thermal conductivity required by the application. Generally, the techniques used to characterize nuclear fuel are destructive and require costly equipment and facilities. This paper aims to present a nondestructive technique for ceramic characterization using ultrasound. This technique differs from other ultrasonic techniques because it uses ultrasonic pulse in frequency domain instead of time domain, associating the characteristics of the analyzed material with its frequency spectrum. In the present work, 40 Alumina (Al2O3) ceramic pellets with porosities ranging from 5% to 37%, in absolute terms measured by Archimedes technique, were tested. It can be observed that the frequency spectrum of each pellet varies according to its respective porosity and microstructure, allowing a fast and non-destructive association of the same characteristics with the same spectra pellets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ultrasound Laboratory of the Nuclear Engineering Institute (LABUS / IEN) has developed an ultrasonic technique to measure porosity in nuclear fuel pellets (UO2). By difficulties related to the handling of UO2 pellets, Alumina (Al2O3) pellets have been used in preliminary tests, until a methodology for tests with pellets of UO2 could be defined. In a previous work, in which a contact ultrasonic technique was used, good results were obtained to measure the porosity of Alumina pellets. In the current studies, it was found that the frequency spectrum of an ultrasonic pulse is very sensitive to the porosity of the medium in which it propagates. In order to define the most appropriate experimental apparatus for using immersion technique in future tests, two ultrasonic systems, available in LABUS, which permit to work with the ultrasonic pulse in the frequency domain were evaluated . One system was the Explorer II (Matec INSTRUMENTS) and the other the ultrasonic pulse generator Epoch 4 Plus (Panametrics) coupled with an oscilloscope TDS 3032B (Tektronix). For this evaluation, several frequency spectra were obtained with the two equipment, by the passage of the ultrasonic wave in the same pellet of Alumina. This procedure was performed on four different days, on each day 12 ultrasonic signals were acquired, one signal every 10 minutes, with each apparatus. The results were compared and analyzed as regard the repeatability of the frequency spectra obtained.