884 resultados para fine-grained quartz
Resumo:
The upper shelf of the landslide-prone Ligurian Margin (Western Mediterranean Sea) off Nice well-known for the 1979 Airport Landslide is a natural laboratory to study preconditioning factors and trigger mechanisms for submarine landslides. For this study low-stress ring shear experiments have been carried out on a variety of sediments from >50 gravity cores to characterise the velocity-dependent frictional behaviour. Mean values of the peak coefficient of friction vary from 0.46 for clay-dominated samples (53 % clay, 46 % silt, 1 %) sand up to 0.76 for coarse-grained sediments (26 % clay, 57 % silt, 17 % sand). The majority of the sediments tested show velocity strengthening regardless of the grain size distribution. For clayey sediments the peak and residual cohesive strength increases with increasing normal stress, with values from 1.3 to 10.6 kPa and up to 25 % of all strength supported by cohesive forces in the shallowmost samples. A pseudo-static slope stability analysis reveals that the different lithologies (even clay-rich material with clay content >=50 %) tested are stable up to slope angles <26° under quasi-drained conditions.
Resumo:
Detailed information about the sediment properties and microstructure can be provided through the analysis of digital ultrasonic P wave seismograms recorded automatically during full waveform core logging. The physical parameter which predominantly affects the elastic wave propagation in water-saturated sediments is the P wave attenuation coefficient. The related sedimentological parameter is the grain size distribution. A set of high-resolution ultrasonic transmission seismograms (-50-500 kHz), which indicate downcore variations in the grain size by their signal shape and frequency content, are presented. Layers of coarse-grained foraminiferal ooze can be identified by highly attenuated P waves, whereas almost unattenuated waves are recorded in fine-grained areas of nannofossil ooze. Color -encoded pixel graphics of the seismograms and instantaneous frequencies present full waveform images of the lithology and attenuation. A modified spectral difference method is introduced to determine the attenuation coefficient and its power law a = kF. Applied to synthetic seismograms derived using a "constant Q" model, even low attenuation coefficients can be quantified. A downcore analysis gives an attenuation log which ranges from -700 dB/m at 400 kHz and a power of n=1-2 in coarse-grained sands to few decibels per meter and n :s; 0.5 in fine-grained clays. A least squares fit of a second degree polynomial describes the mutual relationship between the mean grain size and the attenuation coefficient. When it is used to predict the mean grain size, an almost perfect coincidence with the values derived from sedimentological measurements is achieved.