866 resultados para fat mass
Resumo:
This paper uses the lens of life-cycle thinking to discuss recent developments in the Australian mass market fashion industry, and to explore the opportunities and barriers to implementing lifecycle thinking within mass market design processes. Life-cycle analysis is a quantitative tool used to assess the environmental impact of a material or product. However the underlying thinking of life-cycle analysis can also be employed more generally, enabling a designer to assess their processes and design decisions for sustainability. A fashion designer employing life cycle thinking would consider every stage in the life of a garment from fibre and textiles through to consumer use, to eventual disposal and beyond disposal to reuse and later disassembly for fibre recycling. Although life-cycle thinking is rarely considered in the design processes of the fast-paced, price-driven mass market, this paper explores its potential and suggests ways in which it could be implemented.
Resumo:
The majority of Australians will work, sleep and die in the garments of the mass market. Yet, as Ian Griffiths has termed it, the designers of these garments are ‘invisible’ (2000). To the general public, the values, opinions and individual design processes of these designers are as unknown as their names. However, the designer’s role is crucial in making decisions which will have impacts throughout the life of the garment. The high product volume within the mass market ensures that even a small decision in the design process to source a particular fabric, or to use a certain trim or textile finish, can have a profound environmental or social effect. While big companies in Australia have implemented some visible strategies for sustainability, it is uncertain how these may have flowed through to design practices. To explore this question, this presentation will discuss preliminary findings from in-depth semi-structured interviews with Australian mass market fashion designers and product developers. The aim of the interviews was to hear the voice of the insider – to listen to mass market designers describe their design process, discuss the Australian fashion industry and its future challenges and opportunities, and to comment on what a ‘sustainability’ for their industry could look like. These interviews will be discussed within the framework of design philosopher Tony Fry’s writing on design redirection for sustainability.
Resumo:
Australia’s mass market fashion labels have traditionally benefitted from their peripheral location to the world’s fashion centres. Operating a season behind, Australian mass market designers and buyers were well-placed to watch trends play out overseas before testing them in the Australian marketplace. For this reason, often a designer’s role was to source and oversee the manufacture of ‘knock-offs’, or close copies of Northern hemisphere mass market garments. Both Weller (2007) and Walsh (2009) have commented on this practice. The knock-on effect from this continues to be a cautious, derivative fashion sensibility within Australian mass market fashion design, where any new trend or product is first tested and proved overseas months earlier. However, there is evidence that this is changing. The rapid online dissemination of global fashion trends, coupled with the Australian consumer’s willingness to shop online, has meant that the ‘knock-off’ is less viable. For this reason, a number of mass market companies are moving away from the practice of direct sourcing and are developing product in-house under a Northern hemisphere model. This shift is also witnessed in the trend for mass market companies to develop collections in partnership with independent Australian designers. This paper explores the current and potential effects of these shifts within Australian mass market design practice, and discusses how they may impact on designers, consumers and on the wider culture of Australian fashion.
Resumo:
For the Australian fashion industry to move towards a more socially and environmentally ethical industry, change to existing processes would need to occur in all market levels. Change is particularly needed in the mass market, where larger volumes inevitably lead to greater environmental impact. Recent trends in eco fashion have waxed and waned, with only minor impact on the methodology of the mass market design process, with greenwashing and confusion of concepts being common problems. In the mass market, the product lifecycle begins in the design room and ends on the retail floor. A design process for sustainability necessarily expands this lifecycle, assessing the impact of every stage in the life of a fashion garment from the fibre and textiles through to consumer use, to eventual disposal and beyond disposal to fibre recycling and reuse or resale. However, how easy is it for designers to consider a wider view of the product lifecycle in their design process? How much autonomy do they have over their design process, and where do they believe their responsibility begins and ends for the garments they design? This paper will present some preliminary findings from interviews with designers in the Australian women’s wear mass market, revealing their concerns and views on the challenges of a sustainability for their industry.
Resumo:
Anthropometry is a simple and cost-efficient method for the assessment of body composition. However prediction equations to estimate body composition using anthropometry should be ‘population-specific’. Most popular body composition prediction equations for Japanese females were proposed more than 40 years ago and there is some concern regarding their usefulness in Japanese females living today. The aim of this study was to compare percentage body fat (%BF) estimated from anthropometry and dual energy x-ray absorptiometry (DXA) to examine the applicability of commonly used prediction equations in young Japanese females. Body composition of 139 Japanese females aged between 18 and 27 years of age (BMI range: 15.1–29.1 kg/m2) was measured using whole-body DXA (Lunar DPX-LIQ) scans. From anthropometric measurements %BF was estimated using four equations developed from Japanese females. The results showed that the traditionally employed prediction equations for anthropometry significantly (p<0.01) underestimate %BF of young Japanese females and therefore are not valid for the precise estimation of body composition. New %BF prediction equations were proposed from the DXA and anthropometry results. Application of the proposed equations may assist in more accurate assessment of body fatness in Japanese females living today.
Resumo:
Swelling social need and competing calls on government funds have heightened the philanthropic dollar’s value. Yet, Australia is not regarded as having a robust giving culture: while 86% of adults give, a mere 16% plan their giving with those who do donating four times as much as spontaneous givers (Giving Australia, 2005). Traditionally, the prime planned giving example is a charitable bequest, a revenue stream not prevalent here (Baker, 2007). In fact, Baker’s Victorian probate data shows under 5% of estates provide a charitable bequest and just over 1% of estate assets is bequeathed. The UK, in contrast, sources 30% and the US 10% of charitable income through bequests (NCVO, 2004; Sargeant, Wymer and Hilton,2006). Australian charities could boost bequest giving. Understanding the donor market, which has or may remember them in their will is critical. This paper reports donor perceptions of Australian charities’ bequest communication/ marketing. The data forms part of a wider study of Australian donors’ bequest attitudes and behaviour. Charities spend heavily on bequest promotion, from advertising to personal selling to public relations and promotion. Infrastructure funds are scarce so guidance on what works for donors is important. Guy and Patton (1988) made their classic call for a nonprofit marketing perspective and identify the need for charities to better understand the motivations and behaviour of their supporters. In similar vein, this study aims to improve the way nonprofits and givers interact; and ultimately, enhance the giving experience and thus multiply planned giving participation. Academically, it offers insights to Australian bequest motivations and attitudes not studied empirically before.
Resumo:
It is frequently reported that the actual weight loss achieved through exercise interventions is less than theoretically expected. Amongst other compensatory adjustments that accompany exercise training (e.g., increases in resting metabolic rate and energy intake), a possible cause of the less than expected weight loss is a failure to produce a marked increase in total daily energy expenditure due to a compensatory reduction in non-exercise activity thermogenesis (NEAT). Therefore, there is a need to understand how behaviour is modified in response to exercise interventions. The proposed benefits of exercise training are numerous, including changes to fat oxidation. Given that a diminished capacity to oxidise fat could be a factor in the aetiology of obesity, an exercise training intensity that optimises fat oxidation in overweight/obese individuals would improve impaired fat oxidation, and potentially reduce health risks that are associated with obesity. To improve our understanding of the effectiveness of exercise for weight management, it is important to ensure exercise intensity is appropriately prescribed, and to identify and monitor potential compensatory behavioural changes consequent to exercise training. In line with the gaps in the literature, three studies were performed. The aim of Study 1 was to determine the effect of acute bouts of moderate- and high-intensity walking exercise on NEAT in overweight and obese men. Sixteen participants performed a single bout of either moderate-intensity walking exercise (MIE) or high-intensity walking exercise (HIE) on two separate occasions. The MIE consisted of walking for 60-min on a motorised treadmill at 6 km.h-1. The 60-min HIE session consisted of walking in 5-min intervals at 6 km.h-1 and 10% grade followed by 5-min at 0% grade. NEAT was assessed by accelerometer three days before, on the day of, and three days after the exercise sessions. There was no significant difference in NEAT vector magnitude (counts.min-1) between the pre-exercise period (days 1-3) and the exercise day (day 4) for either protocol. In addition, there was no change in NEAT during the three days following the MIE session, however NEAT increased by 16% on day 7 (post-exercise) compared with the exercise day (P = 0.32). During the post-exercise period following the HIE session, NEAT was increased by 25% on day 7 compared with the exercise day (P = 0.08), and by 30-33% compared with the pre-exercise period (day 1, day 2 and day 3); P = 0.03, 0.03, 0.02, respectively. To conclude, a single bout of either MIE or HIE did not alter NEAT on the exercise day or on the first two days following the exercise session. However, extending the monitoring of NEAT allowed the detection of a 48 hour delay in increased NEAT after performing HIE. A longer-term intervention is needed to determine the effect of accumulated exercise sessions over a week on NEAT. In Study 2, there were two primary aims. The first aim was to test the reliability of a discontinuous incremental exercise protocol (DISCON-FATmax) to identify the workload at which fat oxidation is maximised (FATmax). Ten overweight and obese sedentary male men (mean BMI of 29.5 ¡Ó 4.5 kg/m2 and mean age of 28.0 ¡Ó 5.3 y) participated in this study and performed two identical DISCON-FATmax tests one week apart. Each test consisted of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The starting work load of 28 W was increased every 4-min using 14 W increments followed by 2-min rest intervals. When the respiratory exchange ratio was consistently >1.0, the workload was increased by 14 W every 2-min until volitional exhaustion. Fat oxidation was measured by indirect calorimetry. The mean FATmax, ƒtV O2peak, %ƒtV O2peak and %Wmax at which FATmax occurred during the two tests were 0.23 ¡Ó 0.09 and 0.18 ¡Ó 0.08 (g.min-1); 29.7 ¡Ó 7.8 and 28.3 ¡Ó 7.5 (ml.kg-1.min-1); 42.3 ¡Ó 7.2 and 42.6 ¡Ó 10.2 (%ƒtV O2max) and 36.4 ¡Ó 8.5 and 35.4 ¡Ó 10.9 (%), respectively. A paired-samples T-test revealed a significant difference in FATmax (g.min-1) between the tests (t = 2.65, P = 0.03). The mean difference in FATmax was 0.05 (g.min-1) with the 95% confidence interval ranging from 0.01 to 0.18. Paired-samples T-test, however, revealed no significant difference in the workloads (i.e. W) between the tests, t (9) = 0.70, P = 0.4. The intra-class correlation coefficient for FATmax (g.min-1) between the tests was 0.84 (95% confidence interval: 0.36-0.96, P < 0.01). However, Bland-Altman analysis revealed a large disagreement in FATmax (g.min-1) related to W between the two tests; 11 ¡Ó 14 (W) (4.1 ¡Ó 5.3 ƒtV O2peak (%)).These data demonstrate two important phenomena associated with exercise-induced substrate oxidation; firstly, that maximal fat oxidation derived from a discontinuous FATmax protocol differed statistically between repeated tests, and secondly, there was large variability in the workload corresponding with FATmax. The second aim of Study 2 was to test the validity of a DISCON-FATmax protocol by comparing maximal fat oxidation (g.min-1) determined by DISCON-FATmax with fat oxidation (g.min-1) during a continuous exercise protocol using a constant load (CONEX). Ten overweight and obese sedentary males (BMI = 29.5 ¡Ó 4.5 kg/m2; age = 28.0 ¡Ó 4.5 y) with a ƒtV O2max of 29.1 ¡Ó 7.5 ml.kg-1.min-1 performed a DISCON-FATmax test consisting of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The 1-h CONEX protocol used the workload from the DISCON-FATmax to determine FATmax. The mean FATmax, ƒtV O2max, %ƒtV O2max and workload at which FATmax occurred during the DISCON-FATmax were 0.23 ¡Ó 0.09 (g.min-1); 29.1 ¡Ó 7.5 (ml.kg-1.min-1); 43.8 ¡Ó 7.3 (%ƒtV O2max) and 58.8 ¡Ó 19.6 (W), respectively. The mean fat oxidation during the 1-h CONEX protocol was 0.19 ¡Ó 0.07 (g.min-1). A paired-samples T-test revealed no significant difference in fat oxidation (g.min-1) between DISCON-FATmax and CONEX, t (9) = 1.85, P = 0.097 (two-tailed). There was also no significant correlation in fat oxidation between the DISCON-FATmax and CONEX (R=0.51, P = 0.14). Bland- Altman analysis revealed a large disagreement in fat oxidation between the DISCONFATmax and CONEX; the upper limit of agreement was 0.13 (g.min-1) and the lower limit of agreement was ¡V0.03 (g.min-1). These data suggest that the CONEX and DISCONFATmax protocols did not elicit different rates of fat oxidation (g.min-1). However, the individual variability in fat oxidation was large, particularly in the DISCON-FATmax test. Further research is needed to ascertain the validity of graded exercise tests for predicting fat oxidation during constant load exercise sessions. The aim of Study 3 was to compare the impact of two different intensities of four weeks of exercise training on fat oxidation, NEAT, and appetite in overweight and obese men. Using a cross-over design 11 participants (BMI = 29 ¡Ó 4 kg/m2; age = 27 ¡Ó 4 y) participated in a training study and were randomly assigned initially to: [1] a lowintensity (45%ƒtV O2max) exercise (LIT) or [2] a high-intensity interval (alternate 30 s at 90%ƒtV O2max followed by 30 s rest) exercise (HIIT) 40-min duration, three times a week. Participants completed four weeks of supervised training and between cross-over had a two week washout period. At baseline and the end of each exercise intervention,ƒtV O2max, fat oxidation, and NEAT were measured. Fat oxidation was determined during a standard 30-min continuous exercise bout at 45%ƒtV O2max. During the steady state exercise expired gases were measured intermittently for 5-min periods and HR was monitored continuously. In each training period, NEAT was measured for seven consecutive days using an accelerometer (RT3) the week before, at week 3 and the week after training. Subjective appetite sensations and food preferences were measured immediately before and after the first exercise session every week for four weeks during both LIT and HIIT. The mean fat oxidation rate during the standard continuous exercise bout at baseline for both LIT and HIIT was 0.14 ¡Ó 0.08 (g.min-1). After four weeks of exercise training, the mean fat oxidation was 0.178 ¡Ó 0.04 and 0.183 ¡Ó 0.04 g.min-1 for LIT and HIIT, respectively. The mean NEAT (counts.min-1) was 45 ¡Ó 18 at baseline, 55 ¡Ó 22 and 44 ¡Ó 16 during training, and 51 ¡Ó 14 and 50 ¡Ó 21 after training for LIT and HIIT, respectively. There was no significant difference in fat oxidation between LIT and HIIT. Moreover, although not statistically significant, there was some evidence to suggest that LIT and HIIT tend to increase fat oxidation during exercise at 45% ƒtV O2max (P = 0.14 and 0.08, respectively). The order of training treatment did not significantly influence changes in fat oxidation, NEAT, and appetite. NEAT (counts.min-1) was not significantly different in the week following training for either LIT or HIIT. Although not statistically significant (P = 0.08), NEAT was 20% lower during week 3 of exercise training in HIIT compared with LIT. Examination of appetite sensations revealed differences in the intensity of hunger, with higher ratings after LIT compared with HIIT. No differences were found in preferences for high-fat sweet foods between LIT and HIIT. In conclusion, the results of this thesis suggest that while fat oxidation during steady state exercise was not affected by the level of exercise intensity, there is strong evidence to suggest that intense exercise could have a debilitative effect on NEAT.
Resumo:
The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.
Resumo:
The conclusion that the primary divergences of the modern groups of mammals occurred in the mid-Cretaceous requires fresh thinking about this facet of evolutionary history — especially in ecological terms.
Resumo:
In this study, magnetohydrodynamic natural convection boundary layer flow of an electrically conducting and viscous incompressible fluid along a heated vertical flat plate with uniform heat and mass flux in the presence of strong cross magnetic field has been investigated. For smooth integrations the boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation as well as the free variable formulation. The nonsimilar parabolic partial differential equations are integrated numerically for Pr ≪1 that is appropriate for liquid metals against the local Hartmann parameter ξ . Further, asymptotic solutions are obtained near the leading edge using regular perturbation method for smaller values of ξ . Solutions for values of ξ ≫ 1 are also obtained by employing the matched asymptotic technique. The results obtained for small, large and all ξ regimes are examined in terms of shear stress, τw, rate of heat transfer, qw, and rate of mass transfer, mw, for important physical parameter. Attention has been given to the influence of Schmidt number, Sc, buoyancy ratio parameter, N and local Hartmann parameter, ξ on velocity, temperature and concentration distributions and noted that velocity and temperature of the fluid achieve their asymptotic profiles for Sc ≥ 10:0.
Resumo:
During nutrition intervention programs, some form of dietary assessment is usually necessary. This dietary assessment can be for: initial screening; development of appropriate programs and activities; or, evaluation. Established methods of dietary assessment are not always practical, nor cost effective in such interventions, therefore an abbreviated dietary assessment tool is needed. The Queensland Nutrition Project developed such a tool for male Blue Collar Workers, the Food Behaviour Questionnaire, consisting of 27 food behaviour related questions. This tool has been validated in a sample of 23 men, through full dietary assessment obtained via food frequency questionnaires and 24 hour dietary recalls. Those questions which correlated poorly with the full dietary assessment were deleted from the tool. In all, 13 questions was all that was required to distinguish between high and low dietary intakes of particular nutrients. Three questions when combined had correlations with refined sugar between 0.617 and 0.730 (p<0.005); four questions when combined had correlations with dietary fibre as percentage of energy of 0.45 (p<0.05); five questions when combined had a correlation with total fat of 0.499 (p<0.05); and, 4 questions when combined had a correlation with saturated fat of between 0.451 and 0.589 (p<0.05). A significant correlation could not be found for food behaviour questions with respect to dietary sodium. Correlations for fat as a function of energy could not be found.
Resumo:
A multiple reaction monitoring mass spectrometric assay for the quantification of PYY in human plasma has been developed. A two stage sample preparation protocol was employed in which plasma containing the full length neuropeptide was first digested using trypsin, followed by solid-phase extraction to extract the digested peptide from the complex plasma matrix. The peptide extracts were analysed by LC-MS using multiple reaction monitoring to detect and quantify PYY. The method has been validated for plasma samples, yielding linear responses over the range 5–1,000 ng mL−1. The method is rapid, robust and specific for plasma PYY detection.
Resumo:
Positive and negative ion electrospray ionization (ESI) mass spectra of complexes of positively charged small molecules (distamycin, Hoechst 33258, [Ru(phen)2dpq]Cl2 and [Ru(phen)2dpqC]Cl2) have been compared. [Ru(phen)2dpq]Cl2 and [Ru(phen)2dpqC]Cl2 bind to DNA by intercalation. Negative ion ESI mass spectra of mixtures of [Ru(phen)2dpq]Cl2 or [Ru(phen)2dpqC]Cl2 with DNA showed ions from DNA-ligand complexes consistent with solution studies. In contrast, only ions from freeDNAwere present in positive ion ESI mass spectra of mixtures of [Ru(phen)2dpq]Cl2 or [Ru(phen)2dpqC]Cl2 with DNA, highlighting the need for obtaining ESI mass spectra of non-covalent complexes under a range of experimental conditions. Negative ion spectra of mixtures of the minor groove binder Hoechst 33258 with DNA containing a known minor groove binding sequence were dominated by ions from a 1:1 complex. In contrast, in positive ion spectra there were also ions present from a 2:1 (Hoechst 33258: DNA) complex, suggesting an alternative binding mode was possible either in solution or in the gas phase. When Hoechst 33258 was mixed with a DNA sequence lacking a high affinity minor groove binding site, the negative ion ESI mass spectra showed that 1:1 and 2:1 complexes were formed, consistent with existence of binding modes other than minor groove binding. The data presented suggest that comparison of positive and negative ion ESI-MS spectra might provide an insight into various binding modes in both solution and the gas phase.