958 resultados para epistemological problems of economics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kept up to date by supplements

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Appendixes (p. 127-167) contain bibliographies, lists of films, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Presented at the Water quality management training course conducted by the Water Supply and Pollution Control Training Program, Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio, March 4, 1963."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the pages of the photocopy, which is in double columns, represent approximately 2 pages of the original.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes section "Recent periodicals and new books".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For n >= 5 and k >= 4, we show that any minimizing biharmonic map from Omega subset of R-n to S-k is smooth off a closed set whose Hausdorff dimension is at most n - 5. When n = 5 and k = 4, for a parameter lambda is an element of [0, 1] we introduce lambda-relaxed energy H-lambda of the Hessian energy for maps in W-2,W-2 (Omega; S-4) so that each minimizer u(lambda) of H-lambda is also a biharmonic map. We also establish the existence and partial regularity of a minimizer of H-lambda for lambda is an element of [0, 1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let f : [0, 1] x R2 -> R be a function satisfying the Caxatheodory conditions and t(1 - t)e(t) epsilon L-1 (0, 1). Let a(i) epsilon R and xi(i) (0, 1) for i = 1,..., m - 2 where 0 < xi(1) < xi(2) < (...) < xi(m-2) < 1 - In this paper we study the existence of C[0, 1] solutions for the m-point boundary value problem [GRAPHICS] The proof of our main result is based on the Leray-Schauder continuation theorem.