972 resultados para carcinogenesis
Resumo:
PURPOSE: The prevalence of anaplastic lymphoma kinase (ALK) gene fusion (ALK positivity) in early-stage non-small-cell lung cancer (NSCLC) varies by population examined and detection method used. The Lungscape ALK project was designed to address the prevalence and prognostic impact of ALK positivity in resected lung adenocarcinoma in a primarily European population. METHODS: Analysis of ALK status was performed by immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) in tissue sections of 1,281 patients with adenocarcinoma in the European Thoracic Oncology Platform Lungscape iBiobank. Positive patients were matched with negative patients in a 1:2 ratio, both for IHC and for FISH testing. Testing was performed in 16 participating centers, using the same protocol after passing external quality assessment. RESULTS: Positive ALK IHC staining was present in 80 patients (prevalence of 6.2%; 95% CI, 4.9% to 7.6%). Of these, 28 patients were ALK FISH positive, corresponding to a lower bound for the prevalence of FISH positivity of 2.2%. FISH specificity was 100%, and FISH sensitivity was 35.0% (95% CI, 24.7% to 46.5%), with a sensitivity value of 81.3% (95% CI, 63.6% to 92.8%) for IHC 2+/3+ patients. The hazard of death for FISH-positive patients was lower than for IHC-negative patients (P = .022). Multivariable models, adjusted for patient, tumor, and treatment characteristics, and matched cohort analysis confirmed that ALK FISH positivity is a predictor for better overall survival (OS). CONCLUSION: In this large cohort of surgically resected lung adenocarcinomas, the prevalence of ALK positivity was 6.2% using IHC and at least 2.2% using FISH. A screening strategy based on IHC or H-score could be envisaged. ALK positivity (by either IHC or FISH) was related to better OS.
Resumo:
INTRODUCTION: The phase III FLEX study (NCT00148798) in advanced non-small-cell lung cancer indicated that the survival benefit associated with the addition of cetuximab to cisplatin and vinorelbine was limited to patients whose tumors expressed high levels of epidermal growth factor receptor (EGFR) (immunohistochemistry score of >/=200; scale 0-300). We assessed whether the treatment effect was also modulated in FLEX study patients by tumor EGFR mutation status. METHODS: A tumor mutation screen of EGFR exons 18 to 21 included 971 of 1125 (86%) FLEX study patients. Treatment outcome in low and high EGFR expression groups was analyzed across efficacy endpoints according to tumor EGFR mutation status. RESULTS: Mutations in EGFR exons 18 to 21 were detected in 133 of 971 tumors (14%), 970 of which were also evaluable for EGFR expression level. The most common mutations were exon 19 deletions and L858R (124 of 133 patients; 93%). In the high EGFR expression group (immunohistochemistry score of >/=200), a survival benefit for the addition of cetuximab to chemotherapy was demonstrated in patients with EGFR wild-type (including T790M mutant) tumors. Although patient numbers were small, those in the high EGFR expression group whose tumors carried EGFR mutations may also have derived a survival benefit from the addition of cetuximab to chemotherapy. Response data suggested a cetuximab benefit in the high EGFR expression group regardless of EGFR mutation status. CONCLUSIONS: The survival benefit associated with the addition of cetuximab to first-line chemotherapy for advanced non-small-cell lung cancer expressing high levels of EGFR is not limited by EGFR mutation status.
Resumo:
To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The Second ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on management of patients with nonsmall- cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, early stage disease, locally advanced disease and advanced (metastatic) disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on recommendations for pathology and molecular biomarkers in relation to the diagnosis of lung cancer, primarily non-small-cell carcinomas.
Resumo:
Double-strand breaks represent an extremely cytolethal form of DNA damage and thus pose a serious threat to the preservation of genetic and epigenetic information. Though it is well-known that double-strand breaks such as those generated by ionising radiation are among the principal causative factors behind mutations, chromosomal aberrations, genetic instability and carcino-genesis, significantly less is known about the epigenetic consequences of double-strand break formation and repair for carcinogenesis. Double-strand break repair is a highly coordinated process that requires the unravelling of the compacted chromatin structure to facilitate repair machinery access and then restoration of the original undamaged chromatin state. Recent experimental findings have pointed to a potential mechanism for double-strand break-induced epigenetic silencing. This review will discuss some of the key epigenetic regulatory processes involved in double-strand break (DSB) repair and how incomplete or incorrect restoration of chromatin structure can leave a DSB-induced epigenetic memory of damage with potentially pathological repercussions
Resumo:
Purpose: The therapeutic ratio for ionising radiation treatment of tumour is a trade-off between normal tissue side-effects and tumour control. Application of a radioprotector to normal tissue can reduce side-effects. Here we study the effects of a new radioprotector on the cellular response to radiation. Methylproamine is a DNA-binding radioprotector which, on the basis of published pulse radiolysis studies, acts by repair of transient radiation-induced oxidative species on DNA. To substantiate this hypothesis, we studied protection by methylproamine at both clonogenic survival and radiation-induced DNA damage, assessed by γH2AX (histone 2AX phosphorylation at serine 139) focus formation endpoints. Materials and methods: The human keratinocyte cell line FEP1811 was used to study clonogenic survival and yield of γH2AX foci following irradiation (137Cs γ-rays) of cells exposed to various concentrations of methylproamine. Uptake of methylproamine into cell nuclei was measured in parallel. Results: The extent of radioprotection at the clonogenic survival endpoint increased with methylproamine concentration up to a maximum dose modification factor (DMF) of 2.0 at 10 μM. At least 0.1 fmole/nucleus of methylproamine is required to achieve a substantial level of radioprotection (DMF of 1.3) with maximum protection (DMF of 2.0) achieved at 0.23 fmole/nucleus. The γH2AX focus yield per cell nucleus 45 min after irradiation decreased with drug concentration with a DMF of 2.5 at 10 μM. Conclusions: These results are consistent with the hypothesis that radioprotection by methylproamine is mediated by attenuation of the extent of initial DNA damage.
Resumo:
Radiation therapy is a widely used therapeutic approach for cancer. To improve the efficacy of radiotherapy there is an intense interest in combining this modality with two broad classes of compounds, radiosensitizers and radioprotectors. These either enhance tumour-killing efficacy or mitigate damage to surrounding non-malignant tissue, respectively. Radiation exposure often results in the formation of DNA double-strand breaks, which are marked by the induction of H2AX phosphorylation to generate γH2AX. In addition to its essential role in DDR signalling and coordination of double-strand break repair, the ability to visualize and quantitate γH2AX foci using immunofluorescence microscopy techniques enables it to be exploited as an indicator of therapeutic efficacy in a range of cell types and tissues. This review will explore the emerging applicability of γH2AX as a marker for monitoring the effectiveness of radiation-modifying compounds.
Resumo:
DNA double-strand breaks (DSBs), which are induced by either endogenous metabolic processes or by exogenous sources, are one of the most critical DNA lesions with respect to survival and preservation of genomic integrity. An early response to the induction of DSBs is phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming gammaH2AX(1). Following induction of DSBs, H2AX is rapidly phosphorylated by the phosphatidyl-inosito 3-kinase (PIKK) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)(2). Typically, only a few base-pairs (bp) are implicated in a DSB, however, there is significant signal amplification, given the importance of chromatin modifications in DNA damage signalling and repair. Phosphorylation of H2AX mediated predominantly by ATM spreads to adjacent areas of chromatin, affecting approximately 0.03% of total cellular H2AX per DSB(2,3). This corresponds to phosphorylation of approximately 2000 H2AX molecules spanning approximately 2 Mbp regions of chromatin surrounding the site of the DSB and results in the formation of discrete gammaH2AX foci which can be easily visualized and quantitated by immunofluorescence microscopy(2). The loss of gammaH2AX at DSB reflects repair, however, there is some controversy as to what defines complete repair of DSBs; it has been proposed that rejoining of both strands of DNA is adequate however, it has also been suggested that re-instatement of the original chromatin state of compaction is necessary(4-8). The disappearence of gammaH2AX involves at least in part, dephosphorylation by phosphatases, phosphatase 2A and phosphatase 4C(5,6). Further, removal of gammaH2AX by redistribution involving histone exchange with H2A.Z has been implicated(7,8). Importantly, the quantitative analysis of gammaH2AX foci has led to a wide range of applications in medical and nuclear research. Here, we demonstrate the most commonly used immunofluorescence method for evaluation of initial DNA damage by detection and quantitation of gammaH2AX foci in gamma-irradiated adherent human keratinocytes(9)
Resumo:
An early molecular response to DNA double-strand breaks (DSBs) is phosphorylation of the Ser-139 residue within the terminal SQEY motif of the histone H2AX1,2. This phosphorylation of H2AX is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)3. The phosphorylated form of H2AX, referred to as γH2AX, spreads to adjacent regions of chromatin from the site of the DSB, forming discrete foci, which are easily visualized by immunofluorecence microscopy3. Analysis and quantitation of γH2AX foci has been widely used to evaluate DSB formation and repair, particularly in response to ionizing radiation and for evaluating the efficacy of various radiation modifying compounds and cytotoxic compounds Given the exquisite specificity and sensitivity of this de novo marker of DSBs, it has provided new insights into the processes of DNA damage and repair in the context of chromatin. For example, in radiation biology the central paradigm is that the nuclear DNA is the critical target with respect to radiation sensitivity. Indeed, the general consensus in the field has largely been to view chromatin as a homogeneous template for DNA damage and repair. However, with the use of γH2AX as molecular marker of DSBs, a disparity in γ-irradiation-induced γH2AX foci formation in euchromatin and heterochromatin has been observed5-7. Recently, we used a panel of antibodies to either mono-, di- or tri- methylated histone H3 at lysine 9 (H3K9me1, H3K9me2, H3K9me3) which are epigenetic imprints of constitutive heterochromatin and transcriptional silencing and lysine 4 (H3K4me1, H3K4me2, H3K4me3), which are tightly correlated actively transcribing euchromatic regions, to investigate the spatial distribution of γH2AX following ionizing radiation8. In accordance with the prevailing ideas regarding chromatin biology, our findings indicated a close correlation between γH2AX formation and active transcription9. Here we demonstrate our immunofluorescence method for detection and quantitation of γH2AX foci in non-adherent cells, with a particular focus on co-localization with other epigenetic markers, image analysis and 3Dmodeling.
Resumo:
Purpose The majority of cancer patients will receive radiotherapy (RT), therefore, investigations into advances of this modality are important. Conventional RT dose intensities are limited by adverse responses in normal tissues and a primary goal is to ameliorate adverse normal tissue effects. The aim of these experiments is to further our understanding regarding the mechanism of radioprotection by the DNA minor groove binder, methylproamine, in a cellular context at the DNA level. Materials and methods We used immunocytochemical methods to measure the accumulation of phosphorylated H2AX (γH2AX) foci following ionizing radiation (IR) in patient-derived lymphoblastoid cells exposed to methylproamine. Furthermore, we performed pulsed field gel electrophoresis DNA damage and repair assays to directly interrogate the action of methylproamine on DNA in irradiated cells. Results We found that methylproamine-treated cells had fewer γH2AX foci after IR compared to untreated cells. Also, the presence of methylproamine decreased the amount of lower molecular weight DNA entering the gel as shown by the pulsed field gel electrophoresis assay. Conclusions These results suggest that methylproamine acts by preventing the formation of DNA double-strand breaks (dsbs) and support the hypothesis that radioprotection by methylproamine is mediated, at least in part, by decreasing initial DNA damage.
Resumo:
DNA double-strand breaks (DSBs) are particularly lethal and genotoxic lesions, that can arise either by endogenous (physiological or pathological) processes or by exogenous factors, particularly ionizing radiation and radiomimetic compounds. Phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX, is an early response to DNA double-strand breaks1. This phosphorylation event is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Overall, DSB induction results in the formation of discrete nuclear γH2AX foci which can be easily detected and quantitated by immunofluorescence microscopy2. Given the unique specificity and sensitivity of this marker, analysis of γH2AX foci has led to a wide range of applications in biomedical research, particularly in radiation biology and nuclear medicine. The quantitation of γH2AX foci has been most widely investigated in cell culture systems in the context of ionizing radiation-induced DSBs. Apart from cellular radiosensitivity, immunofluorescence based assays have also been used to evaluate the efficacy of radiation-modifying compounds. In addition, γH2AX has been used as a molecular marker to examine the efficacy of various DSB-inducing compounds and is recently being heralded as important marker of ageing and disease, particularly cancer3. Further, immunofluorescence-based methods have been adapted to suit detection and quantitation of γH2AX foci ex vivo and in vivo4,5. Here, we demonstrate a typical immunofluorescence method for detection and quantitation of γH2AX foci in mouse tissues.
Resumo:
BACKGROUND: About 1-5% of cancer patients suffer from significant normal tissue reactions as a result of radiotherapy (RT). It is not possible at this time to predict how most patients' normal tissues will respond to RT. DNA repair dysfunction is implicated in sensitivity to RT particularly in genes that mediate the repair of DNA double-strand breaks (DSBs). Phosphorylation of histone H2AX (phosphorylated molecules are known as gammaH2AX) occurs rapidly in response to DNA DSBs, and, among its other roles, contributes to repair protein recruitment to these damaged sites. Mammalian cell lines have also been crucial in facilitating the successful cloning of many DNA DSB repair genes; yet, very few mutant cell lines exist for non-syndromic clinical radiosensitivity (RS). METHODS: Here, we survey DNA DSB induction and repair in whole cells from RS patients, as revealed by gammaH2AX foci assays, as potential predictive markers of clinical radiation response. RESULTS: With one exception, both DNA focus induction and repair in cell lines from RS patients were comparable with controls. Using gammaH2AX foci assays, we identified a RS cancer patient cell line with a novel ionising radiation-induced DNA DSB repair defect; these data were confirmed by an independent DNA DSB repair assay. CONCLUSION: gammaH2AX focus measurement has limited scope as a pre-RT predictive assay in lymphoblast cell lines from RT patients; however, the assay can successfully identify novel DNA DSB repair-defective patient cell lines, thus potentially facilitating the discovery of novel constitutional contributions to clinical RS.
Resumo:
The central dogma in radiation biology is that nuclear DNA is the critical target with respect to radiosensitivity. In accordance with the theoretical expectations, and in the absence of a conclusive model, the general consensus in the field has been to view chromatin as a homogeneous template for DNA damage and repair. This paradigm has been called into question by recent findings indicating a disparity in γ-irradiation-induced γH2AX foci formation in euchromatin and heterochromatin. Here, we have extended those studies and provide evidence that γH2AX foci form preferentially in actively transcribing euchromatin following γ-irradiation.
Resumo:
Angiogenesis is indispensable for solid tumor expansion, and thus it has become a major target of cancer research and anti-cancer therapies. Deciphering the arcane actions of various cell populations during tumor angiogenesis requires sophisticated research models, which could capture the dynamics and complexity of the process. There is a continuous need for improvement of existing research models, which engages interdisciplinary approaches of tissue engineering with life sciences. Tireless efforts to develop a new model to study tumor angiogenesis result in innovative solutions, which bring us one step closer to decipher the dubious nature of cancer. This review aims to overview the recent developments, current limitations and future challenges in three-dimensional tissue-engineered models for the study of tumor angiogenesis and for the purpose of elucidating novel targets aimed at anti-cancer drug discovery.
Resumo:
Purpose: The purpose of this work was to evaluate the patient-borne financial cost of common, adverse breast cancer treatment-associated effects, comparing cost across women with or without these side-effects. Methods: 287 Australian women diagnosed with early-stage breast cancer were prospectively followed starting at six months post-surgery for 12 months, with three-monthly assessment of detailed treatment-related side effects and their direct and indirect patient costs attributable to breast cancer. Bootstrapping statistics were used to analyze cost data and adjusted logistic regression was used to evaluate the association between costs and adverse events from breast cancer. Costs were inflated and converted from 2002 Australian to 2014 US dollars. Results: More than 90% of women experienced at least one adverse effect (i.e. post-surgical issue, reaction to radiotherapy, upper-body symptoms or reduced function, lymphedema, fatigue or weight gain). On average, women paid $5,636 (95%CI: $4,694, $6,577) in total costs. Women with any one of the following symptoms (fatigue, reduced upper-body function, upper-body symptoms) or women who report ≥4 adverse treatment-related effects, have 1.5 to nearly 4 times the odds of having higher healthcare costs than women who do not report these complaints (p<0.05). Conclusions: Women face substantial economic burden due to a range of treatment-related health problems, which may persist beyond the treatment period. Improving breast cancer care by incorporating prospective surveillance of treatment-related side effects, and strategies for prevention and treatment of concerns (e.g., exercise) has real potential for reducing patient-borne costs.
Resumo:
Purpose Cognitive alterations are reported in breast cancer patients receiving chemotherapy. This has adverse effects on patients’ quality of life and function. This systematic review investigates the effectiveness of pharmacologic and non-pharmacologic interventions to manage cognitive alterations associated with breast cancer treatment. Methods Medline via EBSCOhost, CINAHL and Cochrane CENTRAL were searched for the period January 1999 to May 2014 for prospective randomized controlled trials related to the management of chemotherapy-associated cognitive alterations. Included studies investigated the management of chemotherapy-associated cognitive alterations and used subjective or objective measures in patients with breast cancer during or after chemotherapy. Two authors independently extracted data and assessed the risk of bias. Results Thirteen studies involving 1138 participants were included. Overall, the risk of bias for the 13 studies were either high (n=11) or unclear (n=2). Pharmacologic interventions included psychostimulants (n=4), epoetin alfa (n=1), and Ginkgo biloba (n=1). Non-pharmacologic interventions were cognitive training (n=5) and physical activity (n=2). Pharmacologic agents were ineffective except for self-reported cognitive function in an epoetin alfa study. Cognitive training interventions demonstrated benefits in self-reported cognitive function, memory, verbal function and language and orientation/attention. Physical activity interventions were effective in improving executive function and self-reported concentration. Conclusion Current evidence does not favor the pharmacologic management of cognitive alterations associated with breast cancer treatment. Cognitive training and physical activity interventions appear promising, but additional studies are required to establish their efficacy. Further research is needed to overcome methodological shortfalls such as heterogeneity in participant characteristics and non-standardized neuropsychological outcome measures.