962 resultados para beta-glucosidase activity
Resumo:
The products formed by a fructan:fructan fructosyltransferase (FFT) activity purified from Lolium rigidum Gaudin were identified after gas chromatography-mass spectrometry of partially methylated alditol acetates, electrospray ionization-mass spectrometry and reversed-phase high-performance liquid chromatography. The FFT activity synthesized oligofructans up to degree of polymerization (DP) 6, but did not synthesize fructans of DP > 6 even when assayed with (1,1,1)-kestopentaose for up to 10 h. The FFT activity when assayed with 1-kestose or 6(G)-kestose synthesized fructan with fructosyl residues almost exclusively linked by beta-2,1-glycosidic linkages. When assayed with 1-kestose, the FFT activity synthesized tetrasaccharides and pentasaccharides with an internal glucosyl residue. The predominant tetrasaccharide was (1&6(G))-kestotetraose and the predominant pentasaccharide was (1&6(G),1)-kestopentaose. By comparison, tetrasaccharides and pentasaccharides extracted from L. rigidum also contained predominantly beta-2,1-glycosidic linked fructans with an internal glucosyl residue. The only exception was that one of the pentasaccharides contained beta-2,1- and beta-2,6-glycosidic linked fructosyl residues. This pentasaccharide was not synthesized by the FFT activity. The role of this FFT activity in formation of oligofructans in L. rigidum is discussed.
Resumo:
Homocystinuria, due to a deficiency of the enzyme cystathionine beta-synthase (CBS), is an inborn error of sulphur-amino acid metabolism, This is an autosomal recessive disease which results in hyperhomocysteinaemia and a wide range of clinical features, including optic lens dislocation, mental retardation, skeletal abnormalities and premature thrombotic events, We report the identification of 5 missense mutations in the protein-coding region of the CBS gene from 3 patients with pyridoxine-nonresponsive homocystinuria. Reverse-transcription PCR was used to amplify CBS cDNA from each patient and the coding region was analysed by direct sequencing, The mutations detected included 3 novel (1058C --> T, 992C --> A and 1316G --> A) and 2 previously identified (430G --> A and 833C --> T) base alterations in the CBS cDNA, Each of these mutations predicts a single amino acid substitution in the CBS polypeptide, Appropriate cassettes of patient CBS cDNA, containing each of the above defined mutations, were used to replace the corresponding cassettes of normal CBS cDNA sequence within the bacterial expression vector pT7-7. These recombinant mutant and normal CBS constructs were expressed in Escherichia coli cells and the catalytic activities of the mutant proteins were compared with normal. All of the mutant proteins exhibited decreased catalytic activity in vitro, which confirmed the association between the individual mutation and CBS dysfunction in each patient.
Resumo:
The balance between different immunological stimuli is essential in the progression and stabilization of atherosclerotic plaques. Immune regulation has been suggested as potential target for the treatment of atherosclerotic disease. We sought to determine whether treatment with pentoxifylline, a phosphodiesterase inhibitor with immunomodulating properties, could reduce the pro-inflammatory response observed in patients with acute coronary syndromes (ACS) and increase anti-inflammatory activity. In a double-blind, prospective, placebo-controlled study, 64 patients with ACS were randomized to receive pentoxifylline 400 mg TID or placebo for 6 months. Analysis of the pro-inflammatory markers, Greactive protein (CRP), interleukin (IL)-6, IL-12, interferon-gamma and tumor necrosis factor (TNF)-alpha and the anti-inflammatory cytokines, transforming growth factor (TGF)-beta 1 and IL-10 were done at baseline, 1 and 6 months. Pentoxifylline treatment significantly reduced the adjusted levels of CRP and TNF-alpha compared to placebo after 6 months (P=0.04 and P < 0.01, respectively). IL-12 increase was significantly less pronounced with pentoxifylline (P=0.04). The levels of the anti-inflammatory cytokine, IL-10, also declined significantly less in the pentoxifylline group compared to placebo (P < 0.01) with a trend towards a higher increase of TGF-beta 1 in the former group (P=0.16). Pentoxifylline reduces pro-inflammatory and increases anti-inflammatory response in patients with ACS and may have beneficial clinical effects on cardiovascular events. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In recent years, beta-blocker therapy has become a primary pharmacologic intervention in patients with heart failure by blocking the sympathetic activity. To compare the exercise training`s sympathetic blockade in healthy subjects (athletes) and the carvedilol`s sympathetic blockade in sedentary heart failure patients by the evaluation of the heart rate dynamic during an exercise test. A total of 26 optimized and 49 nonoptimized heart failure patients in a stable condition (for, at least, 3 months), 15 healthy athletes and 17 sedentary healthy subjects were recruited to perform a cardiopulmonary exercise test. The heart rate dynamic (rest, reserve, peak and the peak heart rate in relation to the maximum predicted for age) was analyzed and compared between the four groups. The heart rate reserve was the same between optimized (48 +/- 15) and nonoptimized (49 +/- 18) heart failure patients (P < 0.0001). The athletes (188 +/- 9) showed a larger heart rate reserve compared to sedentary healthy subjects (92 +/- 10, P < 0.0001). Athletes and healthy sedentary reached the maximum age-predicted heart ratefor their age, but none of the heart failure patients did. The carvedilol`s sympathetic blockade occurred during the rest and during the peak effort in the same proportion, but the exercise training`s sympathetic blockade in healthy subjects occurred mainly in the rest.
Resumo:
To date, several activating mutations have been discovered in the common signal-transducing subunit (h beta c) of the receptors for human granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Two of these, Fl Delta and 1374N, result in a 37 amino acid duplication and a single amino acid substitution in the extracellular domain of h beta c, respectively. A third, V449E, results in a single amino acid substitution in the transmembrane domain, Previous studies comparing the activity of these mutants in different hematopoietic cell lines imply that the transmembrane and extracellular mutations act by different mechanisms and suggest the requirement for cell type-specific molecules in signalling. To characterize the ability of these mutant hpc subunits to mediate growth and differentiation of primary cells and hence investigate their oncogenic potential, we have expressed all three mutants in primary murine hematopoietic cells using retroviral transduction. It is shown that, whereas expression of either extracellular hpc mutant confers factor-independent proliferation and differentiation on cells of the neutrophil and monocyte lineages only, expression of the transmembrane mutant does so on these lineages as well as the eosinophil, basophil, megakaryocyte, and erythroid lineages, Factor-independent myeloid precursors expressing the transmembrane mutant display extended proliferation in liquid culture and in some cases yielded immortalized cell lines. (C) 1997 by The American Society of Hematology.
Resumo:
1. Evidence for a 'putative beta(4)-adrenoceptor' originated over 20 years ago when cardiostimulant effects were observed to nonconventional partial agonists, These agonists were originally described as beta(1)- and beta(2)-adrenoceptor antagonists; however, they cause cardiostimulant effects at much higher concentrations than those required to block beta(1)- and beta(2)-adrenoceptors. Cardiostimulant effects of non-conventional partial agonists have been observed in mouse, rat, guinea-pig, cat, ferret and human heart tissues, 2. The receptor is expressed in several heart regions, including the sinoatrial node, atrium and ventricle, 3. The receptor is resistant to blockade by most antagonists that possess high affinity for beta(1)- and beta(2)- adrenoceptors, but is blocked with moderate affinity by (-)-bupranolol and CGP 20712A. 4. The receptor is pharmacologically distinct from the beta(3)-adrenoceptor. Micromolar concentrations of beta(3)-adrenoceptor agonists have no agonist or blocking activity, The receptor is also resistant to blockade by a beta(3)-adrenoceptor-selective antagonist. 5. The receptor mediates increases in cAMP levels and cAMP-dependent protein kinase (PK) A activity in cardiac tissues. Phosphodiesterase inhibition potentiates the positive chronotropic and inotropic effects of non-conventional partial agonists. 6. The receptor mediates hastening of atrial and ventricular relaxation, which is consistent with involvement of a cAMP-dependent pathway. 7. The non-conventional partial agonist (-)-[H-3]-CGP 12177A labels the cardiac putative beta(4)-adrenoceptor, Non-conventional partial agonists compete for binding with affinities that are closely similar to their agonist potencies, Catecholamines compete for binding in a stereoselective manner with a rank order of affinity of (-)-R0363 > (-)-isoprenaline > (-)-noradrenaline greater than or equal to (-)-adrenaline much greater than (-)-isoprenaline, suggesting that catecholamines can interact with the receptor. 8. The putative beta(4)-adrenoceptor appears to be coupled to the G(s)-adenylyl cyclase system, which could serve as a guide to its future cloning, Activation of the receptor may plausibly improve diastolic function but could also mediate arrhythmias.
Resumo:
Objective. Increased GSK3B activity has been reported as a state marker of major affective episodes in patients with depression and bipolar disorder. No study so far has addressed GSK3B activity in late-life depression. The aims of the present study were to determine GSK3B activity in platelets of elderly patients with major depression, and the association between GSK3B activity and the severity of depressive symptoms and cognitive impairment. Methods. Forty drug-free elderly patients with major depressive episode were compared to healthy older adults (n == 13). Severity of the depressive episode and current cognitive state were determined by the Hamilton Depression Scale (HAM-D) and the Cambridge Cognitive Test (CAMCOG), respectively. Total- and ser-9-phosphorylated GSK3B (tGSK3B and pGSK3B) were determined in platelets by enzyme immunometric assays (EIA). GSK3B activity was indirectly inferred by the GSK3B ratio (i.e. pGSK3B/tGSK3B). Results. Elderly depressed patients had significantly lower pGSK3B levels (P == 0.03) and GSK3B ratio (P == 0.03), indicating higher GSK3B activity. Higher GSK3B activity were observed in patients with severe depressive episode (HAM-D scores > 22, P == 0.03) and with cognitive impairment (CAMCOG scores < 86, P == 0.01). Conclusion. The present findings provide additional evidence of the involvement of GSK3B in the pathophysiology of late-life major depression. Higher GSK3B activity may be more relevant in those patients with more severe depressive symptoms and cognitive impairment.
Resumo:
The objective of the present study was to investigate the correlation between macrophage activity and apoptosis in the polar forms of leprosy because the immunopathological phenomena involved in these forms are still poorly understood For this purpose, 29 skin biopsy samples obtained from patients with the polar forms of leprosy were analyzed. Macrophage activity and apoptosis were evaluated by immunohistochemistry using lysozyme, CD68, iNOS and caspase 3 as markers The nonparametric Mann-Whitney test and Spearman`s linear correlation test were used for statistical analysis The results suggest that the apoptosis rate is under the direct influence of macrophage activity in lesions of patients with the tuberculoid form In contrast, in lepromatous lesions other factors seem to induce programmed cell death, possibly TGF-beta. Further studies are necessary to identify additional factors involved in the immunopathogenesis of leprosy. (C) 2010 Elsevier Ltd. All rights reserved
Resumo:
Storage at low temperature is the most frequently used method to extend the shelf life of banana fruit, and is fundamental for extended storage and transport over long distances. However, storage and transport conditions must be carefully controlled because of the high susceptibility of many commercial cultivars to chilling injury. The physiological behavior of bananas at low temperatures has been studied to identify possible mechanisms of resistance to chilling injury. The aim of this work was to evaluate differences in the starch-to-sucrose metabolism of a less tolerant and susceptible (Musa acuminata, AAA cv. Nanicao) and a more tolerant (M. acuminata x Musa balbusiana, AAB, cv. Prata) banana cultivar to chilling injury. Fruits of these cultivars were stored in chambers at 13 degrees C for 15 d, at which point they were transferred to 19 degrees C, where they were left until complete ripening. The low temperature induced significant changes in the metabolism of starch and sucrose in comparison to fruit ripened only at 19 degrees C. The sucrose accumulation was slightly higher in cv. Prata, and different patterns of starch degradation, sucrose synthesis, activity and protein levels of the alpha-and beta-amylases, starch phosphorylase, sucrose synthase and sucrose phosphate synthase were detected between the cultivars. Our results suggest that starch-to-sucrose metabolism is likely part of the mechanism for cold acclimation in banana fruit, and the cultivar-dependent differences contribute to their ability to tolerate cold temperatures. (C) 2011 Elsevier B.V. All rights reserved.
Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer`s disease
Resumo:
The disruption of glycogen synthase kinase 3-beta (GSK3B) homeostasis has implications in the pathophysiology of neuropsychiatric disorders, namely Alzheimer`s disease (AD). GSK3B activity is increased within the AD brain, favoring the hyperphosphorylation of microtubule-associated protein Tau and the formation of neurofibrillary tangles. Such abnormality has also been detected in leukocytes of patients with cognitive disorders. The aim of the present study was to determine the expression of total and phosphorylated GSK3B at protein level in platelets of older adults with varying degrees of cognitive impairment, and to compare GSK3B activity in patients with AD, mild cognitive impairment (MCI) and healthy controls. Sixty-nine older adults were included (24 patients with mild to moderate AD, 22 patients with amnestic MCI and 23 elderly controls). The expression of platelet GSK3B (total- and Ser-9 phosphorylated GSK3B) was determined by Western blot. GSK3B activity was indirectly assessed by means of the proportion between phospho-GSK3B to total GSK3B (GSK3B ratio), the former representing the inactive form of the enzyme. Ser-9 phosphorylated GSK3B was significantly reduced in patients with MCI and AD as compared to controls (p = 0.04). Platelet GSK3B ratio was significantly decreased in patients with MCI and AD (p = 0.04), and positively correlated with scores on memory tests (r = 0.298, p = 0.01). In conclusion, we corroborate previous evidence of increased GSK activity in peripheral tissues of patients with MCI and AD, and further propose that platelet GSK may be an alternative peripheral biomarker of this abnormality, provided samples are adequately handled in order to preclude platelet activation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
During mango ripening, soluble sugars that account for mango sweetening are accumulated through carbon supplied by both photosynthesis and starch degradation. The cultivar Keitt has a characteristic dependence on sugar accumulation during starch degradation, which takes place during ripening, only a few days after detachment from the tree. Most knowledge about starch degradation is based on seeds and leaves currently used as models. However, information about the mango fruit is scarce. This work presents the evaluation of alpha- and beta-amylases in the starch granule surface during fruit development and ripening. Extractable proteins were assayed for amylase activity and detected by immunofluorescence microscopy and correlated to gene expression. The results suggest that both amylases are involved in starch degradation during mango ripening, probably under the dependence of another signal triggered by the detachment from the mother-plant.
Resumo:
Background: Deficiency of 11 beta-hydroxylase results in the impairment of the last step of cortisol synthesis. In females, the phenotype of this disorder includes different degrees of genital ambiguity and arterial hypertension. Mutations in the CYP11B1 gene are responsible for this disease. Objective: The objective of the study was to screen the CYP11B1 gene for mutations in two unrelated Brazilian females with congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. Design: The coding and intron-exon junction regions of CYP11B1 were totally sequenced. A putative splice mutation was further investigated by minigene transcription. Results: We report two novel CYP11B1 mutations in these Brazilian patients. An Arabian Lebanese descendent female was found to be homozygous for a cytosine insertion at the beginning of exon 8, changing the 404 arginine to proline. It alters the open reading frame, creating a putative truncated protein at 421 residue, which eliminates the domain necessary for the association of heme prosthetic group. A severely virilized female was homozygous for the g. 2791G>A transition in the last position of exon 4. This nucleotide is also part of 5` intron 4 donor splice site consensus sequence. Minigene experiments demonstrated that g. 2791G>A activated an alternative splice site within exon 4, leading to a 45-bp deletion in the transcript. The putative translation of such modified mRNA indicates a truncated protein at residue 280. Conclusions: We describe two novel mutations, g. 4671_4672insC and g. 2791G>A, that drastically affects normal protein structure. These mutations abolish normal enzyme activity, leading to a severe phenotype of congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. (J Clin Endocrinol Metab 94: 3481-3485, 2009)
Resumo:
Lipopolysaccharide (LPS) stimulates cytoplasmic accumulation of pro-interleukin (IL)-1 beta. Activation of P2X(7) receptors stimulates conversion of pro-IL-1 beta into mature IL-1 beta, which is then secreted. Because both LPS (in vivo) and IL-1 beta (in vitro) decrease vascular reactivity to contractile agents, we hypothesized the following: 1) P2X(7) receptor activation contributes to LPS-induced vascular hyporeactivity, and 2) IL-1 beta mediates this change. Thoracic aortas were obtained from 12-week-old male C57BL/6 mice. The aortic rings were incubated for 24 h in Dulbecco`s modified Eagle`s medium, LPS, benzoylbenzoyl-ATP (BzATP; P2X(7) receptor agonist), LPS plus BzATP, oxidized ATP (oATP; P2X(7) receptor antagonist), or oATP plus LPS plus BzATP. After the treatment, the rings were either mounted in a myograph for evaluation of contractile activity or homogenized for IL-1 beta and inducible nitric-oxide synthase (iNOS) protein measurement. In endothelium-intact aortic rings, phenylephrine (PE)-induced contractions were not altered by incubation with LPS or BzATP, but they significantly decreased in aortic rings incubated with LPS plus BzATP. Treatment with oATP or IL-1ra (IL-1 beta receptor antagonist) reversed LPS plus BzATP-induced hyporeactivity to PE. In the presence of N(G)-nitro-L-arginine methyl ester or N-([3-(aminomethyl) phenyl] methyl) ethanimidamide (selective iNOS inhibitor), the vascular hyporeactivity induced by LPS plus BzATP on PE responses was not observed. BzATP augmented LPS-induced IL-1 beta release and iNOS protein expression, and these effects were also inhibited by oATP. Moreover, incubation of endothelium-intact aortic rings with IL-1 beta induced iNOS protein expression. Thus, activation of P2X 7 receptor amplifies LPS-induced hyporeactivity in mouse endothelium-intact aorta, which is associated with IL-1 beta-mediated release of nitric oxide by iNOS.
Resumo:
Introduction Irinotecan (CPT-11) is an inhibitor of DNA topoisomerase I and is clinically effective against several cancers. A major toxic effect of CPT-11 is delayed diarrhea; however, the exact mechanism by which the drug induces diarrhea has not been established. Purpose Elucidate the mechanisms of induction of delayed diarrhea and determine the effects of the cytokine production inhibitor pentoxifylline (PTX) and thalidomide (TLD) in the experimental model of intestinal mucositis, induced by CPT-11. Materials and methods Intestinal mucositis was induced in male Swiss mice by intraperitoneal administration of CPT-11 (75 mg/kg) daily for 4 days. Animals received subcutaneous PTX (1.7, 5 and 15 mg/kg) or TLD (15, 30, 60 mg/kg) or 0.5 ml of saline daily for 5 and 7 days, starting 1 day before the first CPT-11 injection. The incidence of delayed diarrhea was monitored by scores and the animals were sacrificed on the 5th and 7th experimental day for histological analysis, immunohistochemistry for TNF-alpha and assay of myeloperoxidase (MPO) activity, tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta) and KC ELISA. Results CPT-11 caused significant diarrhea, histopathological alterations (inflammatory cell infiltration, loss of crypt architecture and villus shortening) and increased intestinal tissue MPO activity, TNF-alpha, IL-1 beta and KC level and TNF-alpha immuno-staining. PTX inhibited delayed diarrhea of mice submitted to intestinal mucositis and reduced histopathological damage, intestinal MPO activity, tissue level of TNF-alpha, IL-1 beta and KC and TNF-alpha immuno-staining. TLD significantly reduced the lesions induced by CPT-11 in intestinal mucosa, decreased MPO activity, TNF-alpha tissue level and TNF-alpha immuno-staining, but did not reduce the severity of diarrhea. Conclusion These results suggest an important role of TNF-alpha, IL-1 beta and KC in the pathogenesis of intestinal mucositis induced by CPT-11.
Resumo:
In the present study, we investigate whether mast cells and macrophages are involved in the control of IL-1 beta-induced neutrophil migration, as well as the participation of chemotactic mediators. IL-1 beta induced a dose-dependent neutrophil migration to the peritoneal cavity of rats which depends on LTB4, PAF and cytokines, since the animal treatment with inhibitors of these mediators (MK 886, PCA 4248 and dexamethasone respectively) inhibited IL-1 beta-induced neutrophil migration. The neutrophil migration induced by IL-1 beta is dependent on mast cells and macrophages, since depletion of mast cells reduced the process whereas the increase of macrophage population enhanced the migration. Moreover, mast cells or macrophages stimulated with IL-1 beta released a neutrophil chemotactic factor, which mimicked the neutrophil migration induced by IL-1 beta. The chemotactic activity of the supernatant of IL-1 beta-stimulated macrophages is due to the presence of LTB4, since MK 886 inhibited its release. Moreover, the chemotactic activity of IL-1 beta-stimulated mast cells supernatant is due to the presence of IL-1 beta and TNF-alpha, since antibodies against these cytokines inhibited its activity. Furthermore, significant amounts of these cytokines were detected in the supernatant. In conclusion, our results suggest that neutrophil migration induced by IL-1 beta depends upon LTB4 released by macrophages and upon IL-1 beta and TNF alpha released by mast cells.