820 resultados para _Otro (álgebra)
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Los alumnos de primero de BUP o de tercero de la ESO presentan dificultades en el aprendizaje de polinomios y, sobre todo, en su factorización. Por lo tanto, se propone facilitar este aprendizaje con el diseño de la UD (Unidad de funciones lineales, afines y cuadráticas), para que los alumnos tuviesen un primer contacto con la factorización de expresiones algebraicas en un contexto más próximo a ellos. De esta manera, los alumnos aprenden un concepto abstracto del álgebra mediante conceptos geométricos conocidos y más próximos a ellos. Esto permitirá, en ocasiones posteriores, abordar de manera más formal la factorización de polinomios mediante otros métodos.
Resumo:
Resumen tomado de la publicación. IV número monográfico con el título: VII Seminario de Investigación y pensamiento numérico y algebraico (PNA).
Resumo:
Los problemas que plantea la didáctica de las matemáticas en la educación secundaria son planteados desde distintas perspectivas. En primer lugar desde el punto de vista de su planificación o programación. Se señalan ventajas e inconvenientes de una programación con un método cíclico. Después se reflexiona en torno a los conocimientos matemáticos más simples e intuitivos, y pro tanto los más aptos para los primeros ciclos medios como el cálculo, la numeración o una geometría simple. En este contexto también se hace referencia al método intuitivo. Se prosigue con la iniciación al cálculo literal y al álgebra. En la transición a los ciclos superiores del bachillerato, posibilita el estudio de la Trigonometría y de las ecuaciones y problemas de segundo grado. Por último, el bachiller está capacitado para pasar del conocimiento matemático basado en lo intuitivo, a un conocimiento basado en lo racional, que le permite, por ejemplo, la representación interna del espacio euclídeo.
Resumo:
Explica un método sencillo para realizar las inecuaciones algebráicas de grado superior.
Resumo:
Explicación del Álgebra de Boole y su aplicación al ámbito del diseño electrónico, para la construcción de circuitos y la realización de prácticas en las clases de bachillerato.
Resumo:
El estudio de los cuadrados mágicos ha preocupado desde siempre al matemático. Su origen se remonta a China, en torno al tercer milenio antes de Cristo. Es un cuadrado en notación decimal en el que la suma de los números de cada fila, de cada columna y cada una de las diagonales es quince. De las posibilidades que ofrece el cuadrado mágico nos hemos decidido por su estructura algebraica por las posibilidades que ofrece para los alumnos de COU, al manejarse en él temas que tienen relación con el temario del curso. Nos limitaremos a los cuadrados mágicos con coeficientes reales, a las matrices. Llamamos cuadrado mágico de orden n a toda matriz n x n tal que la suma de los elementos de cada fila, de cada columna y de cada una de las diagonales son iguales. A la constante que se obtiene como suma de cada una de la diagonales se llama constante mágica del cuadrado mágico. Existen casos particulares como el cuadrado mágico de orden uno, dos, tres, etcétera, es una matriz de coeficiente uno, dos, tres, etcétera.
Resumo:
Resolución de un problema matemático sobre estructuras algebraicas con un conjunto de funciones reales. La letra F representa el conjunto de las 16 funciones de verdad de la lógica bivalente. Se representan estas funciones con letras minúsculas de acuerdo con una serie de convenciones. Cada una de estas letras seguida del apóstrofo representará la correspondiente función complementaria. A partir de operaciones matemáticas, se obtienen demostraciones de fenómenos reales.
Resumo:
Se desarrolla un estudio metodológico sobre las dificultades que se encuentra el alumno de Bachillerato elemental en el planteamiento de problemas algebraicos. Para ello, se utiliza el cálculo literal, y también se aportan orientaciones mediante ejemplos de otro tipo de problemas: de edades, de interés, descuento, mezclas, aleaciones, fuentes y obreros, y móviles.
Resumo:
Se presenta un estudio sobre: el conjunto N de los números naturales, el conjunto NxN, representación gráfica de NxN, relación E de equivalencia, el conjunto Z, elementos canónicos, notación, interpretación gráfica de NxN entre E, representación gráfica de Z, adición de números enteros, isomorfismo entre N y Z, resolución de la ecuación a+x=b, multiplicación de números enteros, propiedad distributiva, anillo Z de los números enteros, isomorfismo, y observación.
Resumo:
En diversos países se han realizado diferentes estudios y una reestructuración de los programas de ciencias del bachillerato para adaptarlos a la realidad existente experimentos, entre los problemas de investigación operativa y como más simples los de programación lineal, hay ejercicios lo suficientemente sencillos que pueden ser incluidos entre las cuestiones prácticas que se simultanean con el estudio de la geometría analítica de la línea recta La mayor parte de las decisiones diarias sobre cuestiones de carácter práctico se relacionan con variables o parámetros ligados por acotaciones o desigualdades: nuestro nivel de vida requiere unos ingresos no inferiores a una cifra. Esta cifra limita la cuantía de nuestro presupuesto familiar, dentro del que está la manutención, etcétera. Es cierto que gran parte de estos temas se resuelven con una estrategia dictada por la intuición, que si no cumple las condiciones óptimas satisface las exigencias vitales las ciencias sociales y la industria presentan frecuentemente problemas sobre variables ligadas de modos muy diversos. Con ello, lo único que se pretende es demostrar a los alumnos de bachillerato ejemplos cotidianos que se pueden resolver fácilmente.
Resumo:
Se expone un resumen de todas las clases de estructuras algebraicas existentes en el campo numérico.
Resumo:
Explicación y demostración de la correspondencia de los números fraccionarios con los números naturales para su ordenación.
Resumo:
Se presentan las posibles agrupaciones que se pueden formar con las proposiciones: conjunto de todas las proposiciones, valoración de una proposición, cálculo proposicional, disyunción, conjunción, negación, consecuencias, implicación, equivalencia, función proposicional sobre un conjunto, disyunción de funciones proposicionales, conjunción de funciones proposicionales, y negación de función proposicional. Como conclusión final se expone que el conjunto de las proposiciones es un álgebra de Boole respecto de la disyunción, conjunción y negación.