924 resultados para Warming device
Resumo:
A vision based technique for non-rigid control is presented that can be used for animation and video game applications. The user grasps a soft, squishable object in front of a camera that can be moved and deformed in order to specify motion. Active Blobs, a non-rigid tracking technique is used to recover the position, rotation and non-rigid deformations of the object. The resulting transformations can be applied to a texture mapped mesh, thus allowing the user to control it interactively. Our use of texture mapping hardware allows us to make the system responsive enough for interactive animation and video game character control.
Resumo:
Colour is everywhere in our daily lives and impacts things like our mood, yet we rarely take notice of it. One method of capturing and analysing the predominant colours that we encounter is through visual lifelogging devices such as the SenseCam. However an issue related to these devices is the privacy concerns of capturing image level detail. Therefore in this work we demonstrate a hardware prototype wearable camera that captures only one pixel - of the dominant colour prevelant in front of the user, thus circumnavigating the privacy concerns raised in relation to lifelogging. To simulate whether the capture of dominant colour would be sufficient we report on a simulation carried out on 1.2 million SenseCam images captured by a group of 20 individuals. We compare the dominant colours that different groups of people are exposed to and show that useful inferences can be made from this data. We believe our prototype may be valuable in future experiments to capture colour correlated associated with an individual's mood.Colour is everywhere in our daily lives and impacts things like our mood, yet we rarely take notice of it. One method of capturing and analysing the predominant colours that we encounter is through visual lifelogging devices such as the SenseCam. However an issue related to these devices is the privacy concerns of capturing image level detail. Therefore in this work we demonstrate a hardware prototype wearable camera that captures only one pixel - of the dominant colour prevelant in front of the user, thus circumnavigating the privacy concerns raised in relation to lifelogging. To simulate whether the capture of dominant colour would be sufficient we report on a simulation carried out on 1.2 million SenseCam images captured by a group of 20 individuals. We compare the dominant colours that different groups of people are exposed to and show that useful inferences can be made from this data. We believe our prototype may be valuable in future experiments to capture colour correlated associated with an individual's mood.
Resumo:
This thesis investigated the block copolymer (BCP) thin film characteristics and pattern formation using a set of predetermined molecular weights of PS-b-PMMA and PS-b-PDMS. Post BCP pattern fabrication on the required base substrate a dry plasma etch process was utilised for successful pattern transfer of the BCP resist onto underlying substrate. The resultant sub-10 nm device features were used in front end of line (FEoL) fabrication of active device components in integrated circuits (IC). The potential use of BCP templates were further extended to metal and metal-oxide nanowire fabrication. These nanowires were further investigated in real-time applications as novel sensors and supercapacitors.
Resumo:
This PhD thesis concerns the computational modeling of the electronic and atomic structure of point defects in technologically relevant materials. Identifying the atomistic origin of defects observed in the electrical characteristics of electronic devices has been a long-term goal of first-principles methods. First principles simulations are performed in this thesis, consisting of density functional theory (DFT) supplemented with many body perturbation theory (MBPT) methods, of native defects in bulk and slab models of In0.53Ga0.47As. The latter consist of (100) - oriented surfaces passivated with A12O3. Our results indicate that the experimentally extracted midgap interface state density (Dit) peaks are not the result of defects directly at the semiconductor/oxide interface, but originate from defects in a more bulk-like chemical environment. This conclusion is reached by considering the energy of charge transition levels for defects at the interface as a function of distance from the oxide. Our work provides insight into the types of defects responsible for the observed departure from ideal electrical behaviour in III-V metal-oxidesemiconductor (MOS) capacitors. In addition, the formation energetics and electron scattering properties of point defects in carbon nanotubes (CNTs) are studied using DFT in conjunction with Green’s function based techniques. The latter are applied to evaluate the low-temperature, low-bias Landauer conductance spectrum from which mesoscopic transport properties such as the elastic mean free path and localization length of technologically relevant CNT sizes can be estimated from computationally tractable CNT models. Our calculations show that at CNT diameters pertinent to interconnect applications, the 555777 divacancy defect results in increased scattering and hence higher electrical resistance for electron transport near the Fermi level.
Resumo:
This thesis investigated well-ordered block copolymer (BCP) thin film characteristics and their use for nanoscale pattern formation using a series of polystyrene-block-polymethylmethacrylate (PS-b-PMMA), polystyrene-blockpolydimethylsiloxane (PS-b-PDMS) and polystyrene-block-poly(ethylene oxide) (PS-b-PEO) systems of various molecular weights. BCP thin films, which act as an ‘on-chip’ etch mask and material templates, are highly promising self-assembling process for future scalable nanolithography. Unlike conventional BCP processing methods, the work in this thesis demonstrates that well-ordered patterns can be achieved in a few seconds compared to several hours by use of a non-conventional microwave assisted technique. As a result, well-ordered BCP nanoscale structures can be developed in industry appropriate periods facilitating their incorporation into current technologies. An optimised and controlled plasma dry etch process was used for successful pattern transfer to the underlying silicon substrate. Long range ordered BCP templates were further modified by selective metal inclusion technique to form a hard mask template towards fabrication of high aspect ratio nanopillars and nanowires. The work described here is centred on how these templates might be used to generate function at substrate surfaces. Herein we describe a number of innovations which might allow their successful uptake in a number of applications.
Resumo:
Surgery is one of the most effective and widely used procedures in treating human cancers, but a major problem is that the surgeon often fails to remove the entire tumor, leaving behind tumor-positive margins, metastatic lymph nodes, and/or satellite tumor nodules. Here we report the use of a hand-held spectroscopic pen device (termed SpectroPen) and near-infrared contrast agents for intraoperative detection of malignant tumors, based on wavelength-resolved measurements of fluorescence and surface-enhanced Raman scattering (SERS) signals. The SpectroPen utilizes a near-infrared diode laser (emitting at 785 nm) coupled to a compact head unit for light excitation and collection. This pen-shaped device effectively removes silica Raman peaks from the fiber optics and attenuates the reflected excitation light, allowing sensitive analysis of both fluorescence and Raman signals. Its overall performance has been evaluated by using a fluorescent contrast agent (indocyanine green, or ICG) as well as a surface-enhanced Raman scattering (SERS) contrast agent (pegylated colloidal gold). Under in vitro conditions, the detection limits are approximately 2-5 × 10(-11) M for the indocyanine dye and 0.5-1 × 10(-13) M for the SERS contrast agent. Ex vivo tissue penetration data show attenuated but resolvable fluorescence and Raman signals when the contrast agents are buried 5-10 mm deep in fresh animal tissues. In vivo studies using mice bearing bioluminescent 4T1 breast tumors further demonstrate that the tumor borders can be precisely detected preoperatively and intraoperatively, and that the contrast signals are strongly correlated with tumor bioluminescence. After surgery, the SpectroPen device permits further evaluation of both positive and negative tumor margins around the surgical cavity, raising new possibilities for real-time tumor detection and image-guided surgery.
Resumo:
Quantitative optical spectroscopy has the potential to provide an effective low cost, and portable solution for cervical pre-cancer screening in resource-limited communities. However, clinical studies to validate the use of this technology in resource-limited settings require low power consumption and good quality control that is minimally influenced by the operator or variable environmental conditions in the field. The goal of this study was to evaluate the effects of two sources of potential error: calibration and pressure on the extraction of absorption and scattering properties of normal cervical tissues in a resource-limited setting in Leogane, Haiti. Our results show that self-calibrated measurements improved scattering measurements through real-time correction of system drift, in addition to minimizing the time required for post-calibration. Variations in pressure (tested without the potential confounding effects of calibration error) caused local changes in vasculature and scatterer density that significantly impacted the tissue absorption and scattering properties Future spectroscopic systems intended for clinical use, particularly where operator training is not viable and environmental conditions unpredictable, should incorporate a real-time self-calibration channel and collect diffuse reflectance spectra at a consistent pressure to maximize data integrity.
Resumo:
Gemstone Team Vision
Resumo:
Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate-pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.
Resumo:
The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.
Resumo:
Software-based control of life-critical embedded systems has become increasingly complex, and to a large extent has come to determine the safety of the human being. For example, implantable cardiac pacemakers have over 80,000 lines of code which are responsible for maintaining the heart within safe operating limits. As firmware-related recalls accounted for over 41% of the 600,000 devices recalled in the last decade, there is a need for rigorous model-driven design tools to generate verified code from verified software models. To this effect, we have developed the UPP2SF model-translation tool, which facilitates automatic conversion of verified models (in UPPAAL) to models that may be simulated and tested (in Simulink/Stateflow). We describe the translation rules that ensure correct model conversion, applicable to a large class of models. We demonstrate how UPP2SF is used in themodel-driven design of a pacemaker whosemodel is (a) designed and verified in UPPAAL (using timed automata), (b) automatically translated to Stateflow for simulation-based testing, and then (c) automatically generated into modular code for hardware-level integration testing of timing-related errors. In addition, we show how UPP2SF may be used for worst-case execution time estimation early in the design stage. Using UPP2SF, we demonstrate the value of integrated end-to-end modeling, verification, code-generation and testing process for complex software-controlled embedded systems. © 2014 ACM.
Resumo:
We present a novel system to be used in the rehabilitation of patients with forearm injuries. The system uses surface electromyography (sEMG) recordings from a wireless sleeve to control video games designed to provide engaging biofeedback to the user. An integrated hardware/software system uses a neural net to classify the signals from a user’s muscles as they perform one of a number of common forearm physical therapy exercises. These classifications are used as input for a suite of video games that have been custom-designed to hold the patient’s attention and decrease the risk of noncompliance with the physical therapy regimen necessary to regain full function in the injured limb. The data is transmitted wirelessly from the on-sleeve board to a laptop computer using a custom-designed signal-processing algorithm that filters and compresses the data prior to transmission. We believe that this system has the potential to significantly improve the patient experience and efficacy of physical therapy using biofeedback that leverages the compelling nature of video games.
Resumo:
The separation of red blood cells from plasma flowing in microchannels is possible by bio-physical effects such as an axial migration effect and Zweifach-Fung bifurcation law. In the present study, subchannels are placed alongside a main channel to collect cells and plasma separately. The addition of a constriction in the main microchannel creates a local high shear force region, forcing the cells to migrate and concentrate towards the centre of the channel. The resulting lab-on-a-chip was manufactured using biocompatible materials. Purity efficiency was measured for mussel and human blood suspensions as different parameters including flow rate and geometries of parent and daughter channels were varied.
Resumo:
This paper presents an analysis of biofluid behavior in a T-shaped microchannel device and a design optimization for improved biofluid performance in terms of particle liquid separation. The biofluid is modeled with single phase shear rate non-Newtonian flow with blood property. The separation of red blood cell from plasma is evident based on biofluid distribution in the microchannels against various relevant effects and findings, including Zweifach-Fung bifurcation law, Fahraeus effect, Fahraeus-Lindqvist effect and cell free phenomenon. The modeling with the initial device shows that this T-microchannel device can separate red blood cell from plasma but the separation efficiency among different bifurcations varies largely. In accordance with the imbalanced performance, a design optimization is conducted. This includes implementing a series of simulations to investigate the effect of the lengths of the main and branch channels to biofluid behavior and searching an improved design with optimal separation performance. It is found that changing relative lengths of branch channels is effective to both uniformity of flow rate ratio among bifurcations and reduction of difference of the flow velocities between the branch channels, whereas extending the length of the main channel from bifurcation region is only effective for uniformity of flow rate ratio.
Resumo:
Biofluid behaviour in microchannel systems is investigated in this paper through the modelling of a microfluidic biochip developed for the separation of blood plasma. Based on particular assumptions, the effects of some mechanical features of the microchannels on behaviour of the biofluid are explored. These include microchannel, constriction, bending channel, bifurcation as well as channel length ratio between the main and side channels. The key characteristics and effects of the microfluidic dynamics are discussed in terms of separation efficiency of the red blood cells with respect to the rest of the medium. The effects include the Fahraeus and Fahraeus-Lindqvist effects, the Zweifach-Fung bifurcation law, the cell-free layer phenomenon. The characteristics of the microfluid dynamics include the properties of the laminar flow as well as particle lateral or spinning trajectories. In this paper the fluid is modelled as a single-phase flow assuming either Newtonian or Non-Newtonian behaviours to investigate the effect of the viscosity on flow and separation efficiency. It is found that, for a flow rate controlled Newtonian flow system, viscosity and outlet pressure have little effect on velocity distribution. When the fluid is assumed to be Non-Newtonian more fluid is separated than observed in the Newtonian case, leading to reduction of the flow rate ratio between the main and side channels as well as the system pressure as a whole.