991 resultados para Thermal storage, vessel, EGO
Resumo:
This paper proposes a methodology for improvement of energy efficiency in buildings through the innovative simultaneous incorporation of three distinct phase change materials (here termed as hybrid PCM) in plastering mortars for façade walls. The thermal performance of a hybrid PCM mortar was experimentally evaluated by comparing the behaviour of a prototype test cell (including hybrid PCM plastering mortar) subjected to realistic daily temperature profiles, with the behaviour of a similar prototype test cell, in which no PCM was added. A numerical simulation model was employed (using ANSYS-FLUENT) to validate the capacity of simulating temperature evolution within the prototype containing hybrid PCM, as well as to understand the contribution of hybrid PCM to energy efficiency. Incorporation of hybrid PCM into plastering mortars was found to have the potential to significantly reduce heating/cooling temperature demands for maintaining the interior temperature within comfort levels when compared to normal mortars (without PCM), or even mortars comprising a single type of PCM.
Resumo:
Nowadays, considering the high variety of construction products, adequate material selection, based on their properties and function, becomes increasingly important. In this research, a ranking procedure developed by Czarnecki and Lukowski is applied in mortars with incorporation of phase change materials (PCM). The ranking procedure transforms experimental results of properties into one numerical value. The products can be classified according to their individual properties or even an optimized combination of different properties. The main purpose of this study was the ranking of mortars with incorporation of different contents of PCM based in different binders. Aerial lime, hydraulic lime, gypsum and cement were the binders studied. For each binder, three different mortars were developed. Reference mortars, mortars with incorporation of 40% of PCM and mortars with incorporation of 40% of PCM and 1% of fibers, were tested. Results show that the incorporation of PCM in mortars changes their global performance.
Resumo:
Dissertação de mestrado em Sustentabilidade do Ambiente Construído
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.
Resumo:
When combined at particular molar fractions, sugars, aminoacids or organic acids a present a high melting point depression, becoming liquids at room temperature. These are called Natural Deep Eutectic Solvents – NADES and are envisaged to play a major role on the chemical engineering processes of the future. Nonetheless, there is a significant lack of knowledge of its fundamental and basic properties, which is hindering their industrial applications. For this reason it is important to extend the knowledge on these systems, boosting their application development [1]. In this work, we have developed and characterized NADES based on choline chloride, organic acids, amino acids and sugars. Their density, thermal behavior, conductivity and polarity were assessed for different compositions. The conductivity was measured from 0 to 40 °C and the temperature effect was well described by the Vogel-Fulcher-Tammann equation. The morphological characterization of the crystallizable materials was done by polarized optical microscopy that provided also evidence of homogeneity/phase separation. Additionally, the rheological and thermodynamic properties of the NADES and the effect of water content were also studied. The results show these systems have Newtonian behavior and present significant viscosity decrease with temperature and water content, due to increase on the molecular mobility. The anhydrous systems present viscosities that range from higher than 1000Pa.s at 20°C to less than 1Pa.s at 70°C. DSC characterization confirms that for water content as high as 1:1:1 molar ratio, the mixture retains its single phase behavior. The results obtained demonstrate that the NADES properties can be finely tunned by careful selection of its constituents. NADES present the necessary properties for use as extraction solvents. They can be prepared from inexpensive raw materials and tailored for the selective extraction of target molecules. The data produced in this work is hereafter importance for the selection of the most promising candidates avoiding a time consuming and expensive trial and error phase providing also data for the development of models able to predict their properties and the mechanisms that allow the formation of the deep eutectic mixtures.
Resumo:
In some regions of Brazil, especially where the water is scarce, drinking water is stored in water storage tanks. This practice gives the consumer the guarantee of available water. The water storage conditions such as the exposure to hot weather when the tanks are on rooftops allow the development of microorganisms and microbial biofilms which can deteriorate the water quality and increase the risk to human health [1,2]. This study describes the filamentous fungi (FF) detected in free water and biofilms in drinking water storage tanks in Recife - Pernambuco, Brazil. Five sampling times in triplicate were performed at two distinct points. Colony-forming units (CFU) of FF fungi were determined with 0.45 μm filtration membranes using peptone glucose rose Bengal agar (PGRBA). From the 30 samples analysed a total of 1136 CFU were obtained. The water biofilms were collected from samplers consisting of polyethylene coupons, previously installed in the reservoirs. These coupons were transferred to PGRBA plates and incubated using with the same conditions described for free FF. For the in situ detection of FF in biofilms the Calcofluor White staining technique was used. This procedure demonstrated FF forming biofilms on the surfaces of the coupons. Brazilian legislation does not define limits for FF in drinking water. However considering the potential risk of fungal contamination, the data obtained in this study will contribute to developing future quantitative and qualitative parameters for the presence of fungi in drinking water distribution systems in Brazil.
Resumo:
A possible relationship between C.pneumoniae (CP) infection, atherosclerosis and acute myocardial infarction is a debated matter. Now we performed the search of CP in histological segments of fatal ruptured plaques and of stable plaques by histochemistry (Macchiavello stain), immunohistochemistry and in situ hybridization techniques. Electron microscopy and confocal laser microscopy techniques were used in two additional cases. The semi-quantitification of CP + cells (0-4+) and quantification of lymphocytes demonstrated greater amount of CP + cells and more inflammation in the adventitia of vulnerable plaque vessel segments than of stable ones, larger amount of CP + cells in adventitia than in the plaque and high frequency of CP + cells in all groups studied. This preliminary study strongly suggests a direct pathogenetic involvement of adventitial CP in the rupture of the atheromatous plaque, development of acute myocardial infarction and also in the development of atherosclerosis.
Resumo:
[Excerpt] Introduction: Thermal processing is probably the most important process in food industry that has been used since prehistoric times, when it was discovered that heat enhanced the palatability and the life of the heat-treated food. Thermal processing comprehends the heating of foods at a defined temperature for a certain length of time. However, in some foods, the high thermotolerance of certain enzymes and microorganisms, their physical properties (e.g.,highviscosity),ortheircomponents(e.g.,solidfractions) require the application of extreme heat treatments that not only are energy intensive, but also will adversely affect the nutritional and organoleptic properties of the food. Technologies such as ohmic heating, dielectric heating (which includes microwave heating and radiofrequency heating), inductive heating, and infrared heating are available to replace, or complement, the traditional heat-dependent technologies (heating through superheated steam, hot air, hot water, or other hot liquid, being the heating achieved either through direct contact with those agents – mostly superheated steam – or through contact with a hot surface which is in turn heated by such agents). Given that the “traditional” heatdependent technologies are thoroughly described in the literature, this text will be mainly devoted to the so-called “novel” thermal technologies. (...)
Resumo:
This paper reports on a new façade system that uses passive solutions in the search for energy efficiency. The differentials are the versatility and flexibility of the modules, which are important advantages of the system. The thermal performance of Trombe walls and glazings and the daylighting performance of glazing were the key aspects analyzed in the results. Computational simulations were accomplished for the thermal performance of different arrangements of the modules with DesignBuilder software. The glazing daylighting performance was studied by means of Ecotect and Desktop Radiance programs and compared with the transmittance curves of glazings. Occupancy profile and internal gains were fixed according to the Portuguese reality for both studies. The main characteristics considered in this research were the use of two double glazings, four different climates in Portugal and one and two Trombe walls in the façade. The results show an important reduction in the energy consumption with the use of Trombe walls and double self-cleaning glazing in the façade, which also presented better daylighting performance.
Resumo:
This work focused on how different types of oil phase, MCT (medium chain triglycerides) and LCT (long chain triglycerides), exert influence on the gelation process of beeswax and thus properties of the organogel produced thereof. Organogels were produced at different temperatures and qualitative phase diagrams were constructed to identify and classify the type of structure formed at various compositions. The microstructure of gelator crystals was studied by polarized light microscopy. Melting and crystallization were characterized by differential scanning calorimetry and rheology (flow and small amplitude oscillatory measurements) to understand organogels' behaviour under different mechanical and thermal conditions. FTIR analysis was employed for a further understanding of oil-gelator chemical interactions. Results showed that the increase of beeswax concentration led to higher values of storage and loss moduli (G, G) and complex modulus (G*) of organogels, which is associated to the strong network formed between the crystalline gelator structure and the oil phase. Crystallization occurred in two steps (well evidenced for higher concentrations of gelator) during temperature decreasing. Thermal analysis showed the occurrence of hysteresis between melting and crystallization. Small angle X-ray scattering (SAXS) analysis allowed a better understanding in terms of how crystal conformations were disposed for each type of organogel. The structuring process supported by medium or long-chain triglycerides oils was an important exploit to apprehend the impact of different carbon chain-size on the gelation process and on gels' properties.
Resumo:
PhD in Chemical and Biological Engineering
Resumo:
A rotary thermal diffusion column with the inner cylinder rotating and the outer cylinder static was used to separate n-heptane-benzene mixtures at different speeds of rotation. The results show that the column efficiency depends on the speed of rotation. For the optimum speed the increase in efficiency relative to the static column was of the order of 8%. The role of the geometric irregularities in the annulus width on performance of the rotary column is also discussed.
Resumo:
The influence of the feed composition upon the actual degrees of separation attained at the top and bottom sections of a thermogravitational column is discussed using the classical phenomenological theory of Furry, Jones, and Onsager. It is shown that, except for a feed composition of C 0 = 0.5 (mass fraction), the separation profile is nonsymmetric, i.e., the separations in the top and bottom sections of the column are nonsymmetric with respect to the feed composition, the asymmetry increasing as the feed composition moves away from C 0 = 0.5. An equation for the determination of the optimum feed location as a function of the feed composition is derived.
Resumo:
Data have been obtained in steady-state batch operated thermogravitational separation columns using different binary mixtures to test the theory recently published by Morgado et al. The experimental results confirm that separations by thermal diffusion are asymmetrical except when the initial concentration is 0.5 and that the asymmetry is larger as the initial concentration deviates from 0.5 and as the separation potential increases.