842 resultados para Texture Feature
Resumo:
An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. The segmentation is performed by three "copies" of the BCS and FCS, of small, medium, and large scales, wherein the "short-range" and "long-range" interactions within each scale occur over smaller or larger distances, corresponding to the size of the early filters of each scale. A diffusive filling-in operation within the segmented regions at each scale produces coherent surface representations. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.
Resumo:
A neural model is presented of how cortical areas V1, V2, and V4 interact to convert a textured 2D image into a representation of curved 3D shape. Two basic problems are solved to achieve this: (1) Patterns of spatially discrete 2D texture elements are transformed into a spatially smooth surface representation of 3D shape. (2) Changes in the statistical properties of texture elements across space induce the perceived 3D shape of this surface representation. This is achieved in the model through multiple-scale filtering of a 2D image, followed by a cooperative-competitive grouping network that coherently binds texture elements into boundary webs at the appropriate depths using a scale-to-depth map and a subsequent depth competition stage. These boundary webs then gate filling-in of surface lightness signals in order to form a smooth 3D surface percept. The model quantitatively simulates challenging psychophysical data about perception of prolate ellipsoids (Todd and Akerstrom, 1987, J. Exp. Psych., 13, 242). In particular, the model represents a high degree of 3D curvature for a certain class of images, all of whose texture elements have the same degree of optical compression, in accordance with percepts of human observers. Simulations of 3D percepts of an elliptical cylinder, a slanted plane, and a photo of a golf ball are also presented.
Resumo:
A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.
Resumo:
An improved Boundary Contour System (BCS) neural network model of preattentive vision is applied to two images that produce strong "pop-out" of emergent groupings in humans. In humans these images generate groupings collinear with or perpendicular to image contrasts. Analogous groupings occur in computer simulations of the model. Long-range cooperative and short-range competitive processes of the BCS dynamically form the stable groupings of texture regions in response to the images.
Synchronized Oscillations During Cooperative Feature Lining in a Cortical Model of Visual Perception
Resumo:
A neural network model of synchronized oscillations in visual cortex is presented to account for recent neurophysiological findings that such synchronization may reflect global properties of the stimulus. In these experiments, synchronization of oscillatory firing responses to moving bar stimuli occurred not only for nearby neurons, but also occurred between neurons separated by several cortical columns (several mm of cortex) when these neurons shared some receptive field preferences specific to the stimuli. These results were obtained for single bar stimuli and also across two disconnected, but colinear, bars moving in the same direction. Our model and computer simulations obtain these synchrony results across both single and double bar stimuli using different, but formally related, models of preattentive visual boundary segmentation and attentive visual object recognition, as well as nearest-neighbor and randomly coupled models.
Resumo:
A neural network model of synchronized oscillator activity in visual cortex is presented in order to account for recent neurophysiological findings that such synchronization may reflect global properties of the stimulus. In these recent experiments, it was reported that synchronization of oscillatory firing responses to moving bar stimuli occurred not only for nearby neurons, but also occurred between neurons separated by several cortical columns (several mm of cortex) when these neurons shared some receptive field preferences specific to the stimuli. These results were obtained not only for single bar stimuli but also across two disconnected, but colinear, bars moving in the same direction. Our model and computer simulations obtain these synchrony results across both single and double bar stimuli. For the double bar case, synchronous oscillations are induced in the region between the bars, but no oscillations are induced in the regions beyond the stimuli. These results were achieved with cellular units that exhibit limit cycle oscillations for a robust range of input values, but which approach an equilibrium state when undriven. Single and double bar synchronization of these oscillators was achieved by different, but formally related, models of preattentive visual boundary segmentation and attentive visual object recognition, as well as nearest-neighbor and randomly coupled models. In preattentive visual segmentation, synchronous oscillations may reflect the binding of local feature detectors into a globally coherent grouping. In object recognition, synchronous oscillations may occur during an attentive resonant state that triggers new learning. These modelling results support earlier theoretical predictions of synchronous visual cortical oscillations and demonstrate the robustness of the mechanisms capable of generating synchrony.
Resumo:
An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to two large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. Finally, a diffusive filling-in operation within the segmented regions produces coherent visible structures. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.
Resumo:
The physicochemical properties of cheese and milk gels are greatly influenced by molecular interactions between the casein proteins involving calcium. Novel experiments were designed to investigate the relationship between insoluble caseinbound cations and rheological properties of Cheddar cheese and rennet-induced milk gels. Cheddar cheese and rennet-induced milk gels were supplemented with Mg2+ or Sr2+ to compare their effects on their rheological properties to those previously reported in literature for Ca2+ supplementation. Sr2+ displayed behaviour similar to Ca2+ as observed by its ability to increase the rigidity of cheese and rennet milk gels and also decrease cheese meltability. Mg+2 had no influence on cheese rheological properties and was greatly inferior to Ca2+ and Sr2+ in its ability to increase rennet milk gel elasticity. Cheddar cheese was supplemented with the calcium-chelating salts trisodium citrate, disodium hydrogen phosphate or disodium EDTA, in an attempt to reduce the CCP content of cheese and thereby modify its rheological and functional properties. TSC and EDTA were successful in decreasing cheese CCP, whereas DSP caused an initial increase in CCP content. Cheddar cheese was supplemented with chlorides of iron, copper and zinc at salting to investigate the effects of concentrations of these elements in excess of those found innately or commonly in fortification studies, with emphasis on mineral equilibria changes and resultant alteration of rheological properties. Zinc addition was the only added metal that significantly influenced cheese rheological properties, leading to an increase in cheese rigidity and decreased cheese melt at elevated temperatures. Gum tragacanth was used as a fat-replacer in the manufacture of reduced-fat Cheddar cheese, in an attempt to improve the rheological, functional and sensory properties of reduced-fat Cheddar. Overall, the experimental work reported in this thesis generated new knowledge and theories about how casein-mineral interactions influence rheological properties of casein systems.
Resumo:
The effect of fortification of skim milk powder and sodium caseinate on Cheddar cheeses was investigated. SMP fortification led to decreased moisture, increased yield, higher numbers of NSLAB and reduced proteolysis. The functional and texture properties were also affected by SMP addition and formed a harder, less meltable cheese than the control. NaCn fortification led to increased moisture, increased yield, decreased proteolysis and higher numbers of NSLAB. The functional and textural properties were affected by fortification with NaCn and formed a softer cheese that had similar or less melt than the control. Reducing the lactose:casein ratio of Mozzarella cheese by using ultrafiltration led to higher pH, lower insoluble calcium, lower lactose, galactose and lactic acid levels in the cheese. The texture and functional properties of the cheese was affected by varying the lactose:casein ratio and formed a harder cheese that had similar melt to the control later in ripening. The flavour and bake properties were also affected by decreased lactose:casein ratio; the cheeses had lower acid flavour and blister colour than the control cheese. Varying the ratio of αs1:β-casein in Cheddar cheese affected the texture and functionality of the cheese but did not affect insoluble calcium, proteolysis or pH. Increasing the ratio of αs1:β-casein led to cheese with lower meltability and higher hardness without adverse effects on flavour. Using camel chymosin in Mozzarella cheese instead of calf chymosin resulted in cheese with lower proteolysis, higher softening point, higher hardness and lower blister quantity. The texture and functional properties that determine the shelf life of Mozzarella were maintained for a longer ripening period than when using calf chymosin therefore increasing the window of functionality of Mozzarella. In summary, the results of the trials in this thesis show means of altering the texture, functional, rheology and sensory properties of Mozzarella and Cheddar cheeses.
Resumo:
Mechanical stimuli are important factors that regulate cell proliferation, survival, metabolism and motility in a variety of cell types. The relationship between mechanical deformation of the extracellular matrix and intracellular deformation of cellular sub-regions and organelles has not been fully elucidated, but may provide new insight into the mechanisms involved in transducing mechanical stimuli to biological responses. In this study, a novel fluorescence microscopy and image analysis method was applied to examine the hypothesis that mechanical strains are fully transferred from a planar, deformable substrate to cytoplasmic and intranuclear regions within attached cells. Intracellular strains were measured in cells derived from the anulus fibrosus of the intervertebral disc when attached to an elastic silicone membrane that was subjected to tensile stretch. Measurements indicated cytoplasmic strains were similar to those of the underlying substrate, with a strain transfer ratio (STR) of 0.79. In contrast, nuclear strains were much smaller than those of the substrate, with an STR of 0.17. These findings are consistent with previous studies indicating nuclear stiffness is significantly greater than cytoplasmic stiffness, as measured using other methods. This study provides a novel method for the study of cellular mechanics, including a new technique for measuring intranuclear deformations, with evidence of differential magnitudes and patterns of strain transferred from the substrate to cell cytoplasm and nucleus.
Resumo:
Although many feature selection methods for classification have been developed, there is a need to identify genes in high-dimensional data with censored survival outcomes. Traditional methods for gene selection in classification problems have several drawbacks. First, the majority of the gene selection approaches for classification are single-gene based. Second, many of the gene selection procedures are not embedded within the algorithm itself. The technique of random forests has been found to perform well in high-dimensional data settings with survival outcomes. It also has an embedded feature to identify variables of importance. Therefore, it is an ideal candidate for gene selection in high-dimensional data with survival outcomes. In this paper, we develop a novel method based on the random forests to identify a set of prognostic genes. We compare our method with several machine learning methods and various node split criteria using several real data sets. Our method performed well in both simulations and real data analysis.Additionally, we have shown the advantages of our approach over single-gene-based approaches. Our method incorporates multivariate correlations in microarray data for survival outcomes. The described method allows us to better utilize the information available from microarray data with survival outcomes.
Resumo:
The last few years have seen a substantial increase in the geometric complexity for 3D flow simulation. In this paper we describe the challenges in generating computation grids for 3D aerospace configuations and demonstrate the progress made to eventually achieve a push button technology for CAD to visualized flow. Special emphasis is given to the interfacing from the grid generator to the flow solver by semi-automatic generation of boundary conditions during the grid generation process. In this regard, once a grid has been generated, push button technology of most commercial flow solvers has been achieved. This will be demonstrated by the ad hoc simulation for the Hopper configuration.