953 resultados para Temperature-dependent Sex Determination
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Blue luminescence emission around 480 nm through cooperative upconversion from pairs of Yb3+ ions implanted into 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) tellurite glasses and excited by a cw laser at 1.064 mum is demonstrated. Cooperative luminescence emission enhancement owing to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium ions is also observed. The experimental results revealed a fourfold enhancement in the cooperative luminescence emission when the sample was heated in the temperature range of 20 degreesC-260 degreesC. The thermally induced enhancement is assigned to the effective absorption cross-section for the ytterbium ions which is an increasing function of the medium temperature. (C) 2002 American Institute of Physics.
Resumo:
The surface pressure-molecular area (pi-A) isotherms for Langmuir monolayers of four perylenetetracarboxylic (PTCD) derivatives, measured with varying subphase temperatures and compression speeds, are reported. The behavior of these PTCD derivatives at the water-air interface is modeled using the rigid docking method. This approach is the first attempt to model the molecular orientation of PTCD on the water surface to be compared with experimental Langmuir isotherms. Through this methodology, it would be possible to anticipate aggregation and determine if favorable spatial orientations of perylenes are generated on the water surface. The pi-A isotherm experiments show that these molecules can support high surface pressures, indicating strong packing on the water surface and that the isotherms are compression speed independent but temperature dependent. The molecular orientation and stacking was further examined in Langmuir-Blodgett (LB) monolayers deposited onto glass and glass coated with Ag island films using UV-visible absorption and surface-enhanced fluorescence (SEF) measurements.
Resumo:
The speciose Brazilian Elateridae fauna is characterized by high karyotypic diversity, including one species (Chalcolepidius zonatus Eschscholtz, 1829) with the lowest diploid number within any Coleoptera order. Cytogenetic analysis of Conoderus dimidiatus Germar, 1839, C. scalaris (Germar, 1824,) C. ternarius Germar, 1839, and C. stigmosus Germar, 1839 by standard and differential staining was performed with the aim of establishing mechanisms of karyotypic differentiation in these species. Conoderus dimidiatus, C. scalaris, and C. ternarius have diploid numbers of 2n(male) = 17 and 2n(female) = 18, and a X0/XX sex determination system, similar to that encountered in the majority of Conoderini species. The karyotype of C. stigmosus was characterized by a diploid number of 2n=16 and a neoXY/neoXX sex determination system that was highly differentiated from other species of the genus. Some features of the mitotic and meiotic chromosomes suggest an autosome/ancestral X chromosome fusion as the cause of the neoXY system origin in C. stigmosus. C-banding and silver impregnation techniques showed that the four Conoderus species possess similar chromosomal characteristics to those registered in most Polyphaga species, including pericentromeric C band and autosomal NORs. Triple staining techniques including CMA(3)/DA/DAPI also provided useful information for differentiating these Conoderus species. These techniques revealed unique GC-rich heterochromatin associated with NORs in C. scalaris and C. stigmosus and CMA(3)-heteromorphism in C. scalaris and C. ternarius.
Resumo:
Infrared-to-visible upconversion emission enhancement through thermal effects in Yb3+-sensitized Pr3+-doped fluoroindate glasses excited at 1.064 mu m is investigated. A twentyfold increase in the 485 nm blue emission intensity as the sample temperature was varied from 20 to 260 degrees C was observed. The visible upconversion fluorescence enhancement is ascribed to the temperature dependent multiphonon-assisted anti-Stokes excitation of the ytterbium sensitizer and excited-state absorption of the praseodymium acceptor. A model based upon conventional rate equations considering a temperature dependent effective absorption cross section for the F-2(7/2)-->F-2(5/2) transition of the Yb3+ and (1)G(4)-->P-3(0) excited-state absorption of the Pr3+, agrees very well with the experimental results. (C) 2000 American Institute of Physics. [S0021-8979(00)08209-8].
Resumo:
Tin dioxide (SnO2) thin film photoconductivity spectra were measured for a large temperature range using a deuterium source, the intensity of photocurrent spectra in the range 200-400 nm is temperature dependent, and the photocurrent increases in the ultraviolet even for illumination with photon energies much higher than the bandgap transition. This behavior is related to recombination of photogenerated electron-hole pairs with oxygen adsorbed at grain boundaries, which is consistent with nanoscopic crystallite size of sol-gel deposited films. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The exact solution for the full electronic Hamiltonian for a two-level dimer is obtained. The parameter constellation (20) is reparametrized via orthogonal Slater atomic orbitals, yielding a three-parameter model. With the dimer embedded in a thermal bath, several temperature-dependent dynamical susceptibilities are computed. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The chromosome study of five species of the family Elateridae, belonging to the subfamilies Agrypninae and Elaterinae, and the analysis of the cytogenetic data previously recorded for this family permitted the establishment of the main strategies of karyotypic differentiation that has occurred in the elaterids. In Agrypninae, the three species studied (Conoderus fuscofasciatus, Conoderus rufidens, and Conoderus sp.) showed the male karyotype 2n = 16 + X0. This karyotypic uniformity detected in these Conoderus species has also been shared with other species of the same genus, differing considerably from chromosomal heterogeneity verified in the subfamily Agrypninae. The use of the C-banding technique in C. fuscofasciatus and Conoderus sp. revealed constitutive heterochromatin in the pericentromeric region of the majority of the chromosomes. In C. fuscofasciatus, additional constitutive heterochromatin were also observed in the long arm terminal region of almost all chromosomes. Among the representatives of Elaterinae, the karyotype 2n = 18 + Xy(p) of Pomachilius sp.2 was similar to that verified in the majority of the Coleoptera species, contrasting with the chromosomal formula 2n = 18 + X0 detected in Cardiorhinus rufilateris, which is most common in the species of Elaterinae. In the majority of the elaterids, the chromosomal differentiation has frequently been driven by reduction of the diploid number; but, among the four cytogenetically examined subfamilies, there are some differences in relation to the trends of karyotypic evolution. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The first cytogenetic analysis of fireflies from Brazilian fauna was carried out in this work. The investigation of two species of the subfamily Lampyrinae, Aspisoma maculatum and Photinus sp. (aff. pyralis), showed the diploid number 2n = 19 and an X0 sex determination system in males. These observations are similar to those already described for all the Lampyrinae species previously studied. In contrast, Bicellonycha lividipennis (Photurinae) revealed the karyotype 2n = 16 + neoXY, which has not yet been registered for any firefly species. The neoXY sex determination system encountered in this species probably arose through fusion between an ancestral X sex chromosome, belonging to the X0 system, and an autosomal element. This event also reduced the diploid number from 2n = 19, which is more frequent in the family Lampyridae, to 2n = 18 in B. lividipennis. The analysis of meiotic cells showed that the neoXY sexual bivalent of B. lividipennis exhibited a prominent terminal chiasma, indicating that the sex chromosomes are not wholly differentiated and still retain a region of homology. A review of the cytogenetic data known for the family Lampyridae was also documented in this work, as well as a discussion on the main trends of chromosomal evolution that seem to have occurred in this group.
Resumo:
An experimental study of the temperature dependent dc electrical conductivity of doped poly (p-phenylene) in the range of 50-300 K has been presented. The results have been analyzed in the framework of some hopping models. We have observed that hopping models are not consistent with the temperature dependence of the conductivity data over the entire temperature range of measurement. We find that the logarithmic conductivity is proportional to T-beta, wherethe exponent beta is independent of temperature. It is shown that the most probable transport process in this material for the entire range of temperature is due to multiphonon-assisted hopping of the charge carriers that interact weakly with phonons. The parameters obtained from the fits of the experimental data to this model appear reasonable.
Resumo:
The chromosomes of 173 specimens representing eleven species of the Tropidurus torquatus group, from 33 localities in Brazil, were analysed after Giemsa staining, C-banding, NORs, and replication banding techniques. A karyotype with 2n = 36, including 12 macrochromosomes and 24 microchromosomes (12 M + 24 m), and sex determination of the XY:XX type were found in Tropidurus cocorobensis, T. erythrocephalus, T. etheridgei, T. hispidus, T. hygomi, T. montanus, T. mucujensis, T. oreadicus, and T. torquatus. The two other species, T. itambere and T. psammonastes, presented 2n = 36 (12 M + 23 m) karyotype only in females while males had 2n = 35 (12 M + 23 m), due to the sex determination of the X(1)X(2)Y:X(1)X(1)X(2)X(2) type. Other interspecific differences as well as some intraspecific variation regarding the NORs and C-banding patterns have been observed, mainly in the microchromosome set. on the contrary, the macrochromosomes were highly conservative. Although consistent karyotypic diversity occurred in the torquatus group, the cytogenetic data obtained up to now did not allow us to clarify the phylogenetic relationships of the species. Nevertheless, the geographical distribution of the distinct cytotypes in T. hispidus and T. torquatus suggested that more than one species might be involved in each case.
Resumo:
This work describes the first report about the occurrence of recombination nodules (RNs) in spread pachytene cells of two species of Coleoptera: Palembus dermestoides (Tenebrionidae) and Epicauta atomaria (Meloidae). The RNs were observed in preparations contrasted with phosphotungstic acid. Considering RN morphology and its occurrence in pachytene bivalents (one per autosome bivalent) these structures were interpreted to be late RNs. P. dermestoides and E. atolraria have 2n = 20 chromosomes including an Xyp sex determination system. In spite of most frequently subtelocentric morphology observed in the autosomes of both species, the occurrence of RNs is limited only to the synaptonemal complex (SC) structure of the long arms. These findings are in agreement with those obtained using light microscopy analysis in which only one chiasma or terminalization event is observed per autosomal bivalent in early or late metaphase I cells. The RNs have the same average width of the SC of each analyzed species, a circular shape, strong electron density, and are observed mainly between the lateral elements of the SC. The RNs of P. dermestoides and E. atomaria have approximately the same average size (width), 180 +/- 20 nm and 160 +/- 80 nm, respectively. The absence of RNs in the short arms and its occurrence in the long arms are discussed considering the short arm pericentromeric and pro-centric heterochromatin. Copyright (C) 2003 S. Karger AG, Basel
Resumo:
Er-doped SnO2 thin films, obtained by sol-gel-dip-coating technique, were submitted to excitation with the 4th harmonic of a Nd:YAG laser (266 nm), at low temperature, and a conductivity decay is observed when the illumination is removed. This decay is modeled by considering a thermally activated cross section of an Er-related trapping center. Besides, grain boundary scattering is considered as dominant for electronic mobility. X-ray diffraction data show a characteristic profile of nanoscopic crystallite material (grain average size approximate to 5 nm) in agreement with this model. Temperature dependent and concentration dependent decays are measured and the capture barrier is evaluated from the model, yielding 100 meV for SnO2:0.1% Er and 148 meV for SnO2:4% Er.
Resumo:
Seselin, C14H12O3, is a coumarin which crystallizes in a monoclinic structure P2(1)/b(C-2h(5)) with four molecules per unit cell. In a Fourier-transform Raman spectroscopic study performed at room temperature, several normal modes were observed. Vibrational wavenumber and wave vector calculations using density functional theory were compared with experiment, which allowed the assignment of a number of normal modes of the crystal. Temperature-dependent Raman spectra were recorded between 10 and 300 K. No anomalies were observed in the phonon spectra, indicating that the monoclinic structure remains stable. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
We propose an approach to integrate the theory, simulations, and experiments in protein-folding kinetics. This is realized by measuring the mean and high-order moments of the first-passage time and its associated distribution. The full kinetics is revealed in the current theoretical framework through these measurements. In the experiments, information about the statistical properties of first-passage times can be obtained from the kinetic folding trajectories of single molecule experiments ( for example, fluorescence). Theoretical/simulation and experimental approaches can be directly related. We study in particular the temperature-varying kinetics to probe the underlying structure of the folding energy landscape. At high temperatures, exponential kinetics is observed; there are multiple parallel kinetic paths leading to the native state. At intermediate temperatures, nonexponential kinetics appears, revealing the nature of the distribution of local traps on the landscape and, as a result, discrete kinetic paths emerge. At very low temperatures, exponential kinetics is again observed; the dynamics on the underlying landscape is dominated by a single barrier. The ratio between first-passage-time moments is proposed to be a good variable to quantitatively probe these kinetic changes. The temperature-dependent kinetics is consistent with the strange kinetics found in folding dynamics experiments. The potential applications of the current results to single-molecule protein folding are discussed.