873 resultados para Support Vector Machines and Naive Bayes Classifier
Resumo:
BACKGROUND: Recent neuroimaging studies suggest that value-based decision-making may rely on mechanisms of evidence accumulation. However no studies have explicitly investigated the time when single decisions are taken based on such an accumulation process. NEW METHOD: Here, we outline a novel electroencephalography (EEG) decoding technique which is based on accumulating the probability of appearance of prototypical voltage topographies and can be used for predicting subjects' decisions. We use this approach for studying the time-course of single decisions, during a task where subjects were asked to compare reward vs. loss points for accepting or rejecting offers. RESULTS: We show that based on this new method, we can accurately decode decisions for the majority of the subjects. The typical time-period for accurate decoding was modulated by task difficulty on a trial-by-trial basis. Typical latencies of when decisions are made were detected at ∼500ms for 'easy' vs. ∼700ms for 'hard' decisions, well before subjects' response (∼340ms). Importantly, this decision time correlated with the drift rates of a diffusion model, evaluated independently at the behavioral level. COMPARISON WITH EXISTING METHOD(S): We compare the performance of our algorithm with logistic regression and support vector machine and show that we obtain significant results for a higher number of subjects than with these two approaches. We also carry out analyses at the average event-related potential level, for comparison with previous studies on decision-making. CONCLUSIONS: We present a novel approach for studying the timing of value-based decision-making, by accumulating patterns of topographic EEG activity at single-trial level.
Resumo:
Perinteisesti ajoneuvojen markkinointikampanjoissa kohderyhmät muodostetaan yksinkertaisella kriteeristöllä koskien henkilön tai hänen ajoneuvonsa ominaisuuksia. Ennustavan analytiikan avulla voidaan tuottaa kohderyhmänmuodostukseen teknisesti kompleksisia mutta kuitenkin helppokäyttöisiä menetelmiä. Tässä työssä on sovellettu luokittelu- ja regressiomenetelmiä uuden auton ostajien joukkoon. Tämän työn menetelmiksi on rajattu tukivektorikone sekä Coxin regressiomalli. Coxin regression avulla on tutkittu elinaika-analyysien soveltuvuutta ostotapahtuman tapahtumahetken mallintamiseen. Luokittelu tukivektorikonetta käyttäen onnistuu tehtävässään noin 72% tapauksissa. Tukivektoriregressiolla mallinnetun hankintahetken virheen keskiarvo on noin neljä kuukautta. Työn tulosten perusteella myös elinaika-analyysin käyttö ostotapahtuman tapahtumahetken mallintamiseen on menetelmänä käyttökelpoinen.
Resumo:
Tässä työssä verrattiin monikerrosperseptronin, radiaalikantafunktioverkon, tukivektoriregression ja relevanssivektoriregression soveltuvuutta robottikäden otemallinnukseen. Menetelmille ohjelmoitiin koeympäristö Matlabiin, jossa mallit koestettiin kolmiulotteisella kappaledatalla. Koejärjestely sisälsi kaksi vaihetta. Kokeiden ensimmäisessä vaiheessa menetelmille haettiin sopivat parametrit ja toisessa vaiheessa menetelmät koestettiin. Kokeilla kerättiin dataa menetelmien keskinäiseen vertailuun. Vertailussa huomioitiin laskentanopeus, koulutusaika ja tarkkuus. Tukivektoriregressio löydettiin potentiaaliseksi vaihtoehdoksi mallintamiseen. Tukivektoriregression koetuloksia analysoitiin muita menetelmiä enemmän hyvien koetulosten takia.
Resumo:
Among the challenges of pig farming in today's competitive market, there is factor of the product traceability that ensures, among many points, animal welfare. Vocalization is a valuable tool to identify situations of stress in pigs, and it can be used in welfare records for traceability. The objective of this work was to identify stress in piglets using vocalization, calling this stress on three levels: no stress, moderate stress, and acute stress. An experiment was conducted on a commercial farm in the municipality of Holambra, São Paulo State , where vocalizations of twenty piglets were recorded during the castration procedure, and separated into two groups: without anesthesia and local anesthesia with lidocaine base. For the recording of acoustic signals, a unidirectional microphone was connected to a digital recorder, in which signals were digitized at a frequency of 44,100 Hz. For evaluation of sound signals, Praat® software was used, and different data mining algorithms were applied using Weka® software. The selection of attributes improved model accuracy, and the best attribute selection was used by applying Wrapper method, while the best classification algorithms were the k-NN and Naive Bayes. According to the results, it was possible to classify the level of stress in pigs through their vocalization.
Resumo:
We present a new method to select features for a face detection system using Support Vector Machines (SVMs). In the first step we reduce the dimensionality of the input space by projecting the data into a subset of eigenvectors. The dimension of the subset is determined by a classification criterion based on minimizing a bound on the expected error probability of an SVM. In the second step we select features from the SVM feature space by removing those that have low contributions to the decision function of the SVM.
Resumo:
Distributed and collaborative data stream mining in a mobile computing environment is referred to as Pocket Data Mining PDM. Large amounts of available data streams to which smart phones can subscribe to or sense, coupled with the increasing computational power of handheld devices motivates the development of PDM as a decision making system. This emerging area of study has shown to be feasible in an earlier study using technological enablers of mobile software agents and stream mining techniques [1]. A typical PDM process would start by having mobile agents roam the network to discover relevant data streams and resources. Then other (mobile) agents encapsulating stream mining techniques visit the relevant nodes in the network in order to build evolving data mining models. Finally, a third type of mobile agents roam the network consulting the mining agents for a final collaborative decision, when required by one or more users. In this paper, we propose the use of distributed Hoeffding trees and Naive Bayes classifers in the PDM framework over vertically partitioned data streams. Mobile policing, health monitoring and stock market analysis are among the possible applications of PDM. An extensive experimental study is reported showing the effectiveness of the collaborative data mining with the two classifers.
Resumo:
Scene classification based on latent Dirichlet allocation (LDA) is a more general modeling method known as a bag of visual words, in which the construction of a visual vocabulary is a crucial quantization process to ensure success of the classification. A framework is developed using the following new aspects: Gaussian mixture clustering for the quantization process, the use of an integrated visual vocabulary (IVV), which is built as the union of all centroids obtained from the separate quantization process of each class, and the usage of some features, including edge orientation histogram, CIELab color moments, and gray-level co-occurrence matrix (GLCM). The experiments are conducted on IKONOS images with six semantic classes (tree, grassland, residential, commercial/industrial, road, and water). The results show that the use of an IVV increases the overall accuracy (OA) by 11 to 12% and 6% when it is implemented on the selected and all features, respectively. The selected features of CIELab color moments and GLCM provide a better OA than the implementation over CIELab color moment or GLCM as individuals. The latter increases the OA by only ∼2 to 3%. Moreover, the results show that the OA of LDA outperforms the OA of C4.5 and naive Bayes tree by ∼20%. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.8.083690]
Resumo:
An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.
Resumo:
Several popular Machine Learning techniques are originally designed for the solution of two-class problems. However, several classification problems have more than two classes. One approach to deal with multiclass problems using binary classifiers is to decompose the multiclass problem into multiple binary sub-problems disposed in a binary tree. This approach requires a binary partition of the classes for each node of the tree, which defines the tree structure. This paper presents two algorithms to determine the tree structure taking into account information collected from the used dataset. This approach allows the tree structure to be determined automatically for any multiclass dataset.
Sistema inteligente para detecção de manchas de óleo na superfície marinha através de imagens de SAR
Resumo:
Oil spill on the sea, accidental or not, generates enormous negative consequences for the affected area. The damages are ambient and economic, mainly with the proximity of these spots of preservation areas and/or coastal zones. The development of automatic techniques for identification of oil spots on the sea surface, captured through Radar images, assist in a complete monitoring of the oceans and seas. However spots of different origins can be visualized in this type of imaging, which is a very difficult task. The system proposed in this work, based on techniques of digital image processing and artificial neural network, has the objective to identify the analyzed spot and to discern between oil and other generating phenomena of spot. Tests in functional blocks that compose the proposed system allow the implementation of different algorithms, as well as its detailed and prompt analysis. The algorithms of digital image processing (speckle filtering and gradient), as well as classifier algorithms (Multilayer Perceptron, Radial Basis Function, Support Vector Machine and Committe Machine) are presented and commented.The final performance of the system, with different kind of classifiers, is presented by ROC curve. The true positive rates are considered agreed with the literature about oil slick detection through SAR images presents
Resumo:
This paper presents two approaches of Artificial Immune System for Pattern Recognition (CLONALG and Parallel AIRS2) to classify automatically the well drilling operation stages. The classification is carried out through the analysis of some mud-logging parameters. In order to validate the performance of AIS techniques, the results were compared with others classification methods: neural network, support vector machine and lazy learning.
Classificação de tábuas de madeira usando processamento de imagens digitais e aprendizado de máquina
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Il lavoro è parte integrante di un progetto di ricerca del Ministero della Salute ed è stato sviluppato presso la Fisica Sanitaria ed il reparto di Radioterapia Oncologica dell’Azienda Ospedaliero Universitaria di Modena. L’obiettivo è la realizzazione di modelli predittivi e di reti neurali per tecniche di warping in ambito clinico. Modifiche volumetrico-spaziali di organi a rischio e target tumorali, durante trattamenti tomoterapici, possono alterare la distribuzione di dose rispetto ai constraints delineati in fase di pianificazione. Metodologie radioterapiche per la valutazione di organ motion e algoritmi di registrazione ibrida permettono di generare automaticamente ROI deformate e quantificare la divergenza dal piano di trattamento iniziale. Lo studio si focalizzata sulle tecniche di Adaptive Radiation Therapy (ART) mediante la meta-analisi di 51 pazienti sottoposti a trattamento mediante Tomotherapy. Studiando il comportamento statistico del campione, sono state generate analisi predittive per quantificare in tempo reale divergenze anatomico dosimetriche dei pazienti rispetto al piano originale e prevedere la loro ripianificazione terapeutica. I modelli sono stati implementati in MATLAB, mediante Cluster Analysis e Support Vector Machines; l’analisi del dataset ha evidenziato il valore aggiunto apportabile dagli algoritmi di deformazione e dalle tecniche di ART. La specificità e sensibilità della metodica è stata validata mediante l’utilizzo di analisi ROC. Gli sviluppi del presente lavoro hanno aperto una prospettiva di ricerca e utilizzo in trattamenti multicentrici e per la valutazione di efficacia ed efficienza delle nuove tecnologie in ambito RT.
Resumo:
La sonnolenza durante la guida è un problema di notevole entità e rappresenta la causa di numerosi incidenti stradali. Rilevare i segnali che precedono la sonnolenza è molto importante in quanto, é possibile mettere in guardia i conducenti dei mezzi adottando misure correttive e prevenendo gli incidenti. Attualmente non esiste una metodica efficace in grado di misurare la sonnolenza in maniera affidabile, e che risulti di facile applicazione. La si potrebbe riconoscere da mutazioni di tipo comportamentale del soggetto come: presenza di sbadigli, chiusura degli occhi o movimenti di caduta della testa. I soggetti in stato di sonnolenza presentano dei deficit nelle loro capacità cognitive e psicomotorie. Lo stesso vale per i conducenti i quali, quando sono mentalmente affaticati non sono in grado di mantenere un elevato livello di attenzione. I tempi di reazione si allungano e la capacità decisionale si riduce. Ciò è associato a cambiamenti delle attività delta, theta e alfa di un tracciato EEG. Tramite lo studio dei segnali EEG è possibile ricavare informazioni utili sullo stato di veglia e sull'insorgenza del sonno. Come strumento di classificazione per elaborare e interpretare tali segnali, in questo studio di tesi sono state utilizzate le support vector machines(SVM). Le SVM rappresentano un insieme di metodi di apprendimento che permettono la classicazione di determinati pattern. Necessitano di un set di dati di training per creare un modello che viene testato su un diverso insieme di dati per valutarne le prestazioni. L'obiettivo è quello di classicare in modo corretto i dati di input. Una caratteristica delle SVM è una buona capacità di generalizzare indipendentemente dalla dimensione dello spazio di input. Questo le rende particolarmente adatte per l'analisi di dati biomedici come le registrazioni EEG multicanale caratterizzate da una certa ridondanza intrinseca dei dati. Nonostante sia abbastanza semplice distinguere lo stato di veglia dallo stato di sonno, i criteri per valutarne la transizione non sono ancora stati standardizzati. Sicuramente l'attività elettro-oculografica (EOG) riesce a dare informazioni utili riguardo l'insorgenza del sonno, in quanto essa è caratterizzata dalla presenza di movimenti oculari lenti rotatori (Slow Eye Movements, SEM) tipici della transizione dalla veglia alla sonno. L'attività SEM inizia prima dello stadio 1 del sonno, continua lungo tutta la durata dello stesso stadio 1, declinando progressivamente nei primi minuti dello stadio 2 del sonno fino a completa cessazione. In questo studio, per analizzare l'insorgere della sonnolenza nei conducenti di mezzi, sono state utilizzate registrazioni provenienti da un solo canale EEG e da due canali EOG. Utilizzare un solo canale EEG impedisce una definizione affidabile dell'ipnogramma da parte dei clinici. Quindi l'obiettivo che ci si propone, in primo luogo, è quello di realizzare un classificatore del sonno abbastanza affidabile, a partire da un solo canale EEG, al fine di verificare come si dispongono i SEM a cavallo dell'addormentamento. Quello che ci si aspetta è che effettivamente l'insorgere della sonnolenza sia caratterizzata da una massiccia presenza di SEM.
Resumo:
It is well established that accent recognition can be as accurate as up to 95% when the signals are noise-free, using feature extraction techniques such as mel-frequency cepstral coefficients and binary classifiers such as discriminant analysis, support vector machine and k-nearest neighbors. In this paper, we demonstrate that the predictive performance can be reduced by as much as 15% when the signals are noisy. Specifically, in this paper we perturb the signals with different levels of white noise, and as the noise become stronger, the out-of-sample predictive performance deteriorates from 95% to 80%, although the in-sample prediction gives overly-optimistic results. ACM Computing Classification System (1998): C.3, C.5.1, H.1.2, H.2.4., G.3.