995 resultados para Storage condition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon thin films are very important as protective coatings for a wide range of applications such as magnetic storage devices. The key parameter of interest is the sp3 fraction, since it controls the mechanical properties of the film. Visible Raman spectroscopy is a very popular technique to determine the carbon bonding. However, the visible Raman spectra mainly depend on the configuration and clustering of the sp2 sites. This can result in the Raman spectra of different samples looking similar albeit having a different structure. Thus, visible Raman alone cannot be used to derive the sp3 content. Here we monitor the carbon bonding by using a combined study of Raman spectra taken at two wavelengths (514 and 244 nm). We show how the G peak dispersion is a very useful parameter to investigate the carbon samples and we endorse it as a production-line characterisation tool. The dispersion is proportional to the degree of disorder, thus making it possible to distinguish between graphitic and diamond-like carbon. © 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconfigurable shutter-based free-space optical switching technologies using fiber ribbon and multiple wavelengths per fiber for Storage Area Networks (SANs) application are presented and demonstrated. ©2009 SPIE-OSA-IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconfigurable shutter-based free-space optical switching technologies using fiber ribbon and multiple wavelengths per fiber for Storage Area Networks (SANs) application are presented and demonstrated. ©2009 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los quesos de cabra, con mejores cualidades funcionales provienen de leche de cabras en pastoreo, esto obedece al mayor contenido de ácidos grasos ω-3 y ω-6 en una relación óptima para la salud, sumado a un menor contenido de grasa y colesterol. Saborizar quesos con especias, otorga beneficios sensoriales y saludables al producto. Las especias son usadas para realzar el flavor de los alimentos además presentan beneficios antioxidantes. Sin embargo, se reportaron evidencias del doble papel de los flavonoides como antioxidantes o prooxidantes en función de la concentración de uso. El objetivo del trabajo es evaluar el efecto de distintas concentraciones de especias aromáticas con capacidad antioxidante, frente a las reacciones de deterioro que ocurren en el almacenamiento de quesos de cabra. Se estudió la actividad antirradicalaria (AAR) de 18 especias. Para evaluar la actividad antioxidante (AA0) se usó la técnica de desaparición de un radical libre estable el 2,2-difenil-1-picril hidrazilo (DPPH) y se calculó la AAR porcentual. Definido el queso base estándar (control), se ensayaron tres variedades con especies, elegidas de entre las de mayor AAR (orégano, romero y tomillo) y se adicionaron con las concentraciones 0,4 – 1 % p/p. Estos, fueron madurados 30 días y almacenados 7 meses a 4 °C. Se analizaron cada 4 semanas. Se realizaron pruebas sensoriales de aceptabilidad con 60 consumidores de queso (condición), usando planillas, con escala hedónica. Se trabajó sobre los lípidos extraídos de los quesos. El rancidez y deterioro fueron evaluados con análisis de acidez; índice peróxido y sustancias reactivas al ácido TBA. Los resultados se compararon con el comportamiento sensorial del producto en el tiempo de almacenamiento. En los quesos adicionados al 1 %, la acidez se incrementó con el almacenamiento. El máximo valor corresponde al queso con orégano (3,72 % de ac. láctico a los 126 días). En el control, la acidez inicial fue inferior y alcanzó 1,05 g de ác. láctico % a los 166 días. El IP más alto corresponde a los quesos con orégano al 1% , resultado que se contrapone a la actividad antirradicalaria de esta especia. Al 0,4 %, tanto el IP como el número de TBA son menores en quesos adicionados, respecto del control. En los quesos de cabra analizados las especias agregadas al 1% ejercieron acción prooxidante, mientras que al ser agregadas al 0,4% la acción es antioxidante, lo que indica la importancia de la selección de concentraciones adecuadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the surface melting in the atmosphere by YAG laser-guided micro-arc discharge. In three kinds of surface conditions (free, oiled, and polyethylene covered), we try to control the diameter and the power density of discharge pit. It is found that the power density of 3 x 10(6) W/cm(2) of discharge pit on the oiled surface is moderate to form the melted layer thicker than that of the others, adapting to strengthen the surface of material, and the power density of 1.07 x 10(7) W/cm(2) of discharge pit on the polyethylene-covered surface is highest to form the deepest discharge pit among them, adapting to remove the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain energy density expressions are obtained from a field model that can qualitatively exhibit how the electrical and mechanical disturbances would affect the crack growth behavior in ferroelectric ceramics. Simplification is achieved by considering only three material constants to account for elastic, piezoelectric and dielectric effects. Cross interaction of electric field (or displacement) with mechanical stress (or strain) is identified with the piezoelectric effect; it occurs only when the pole is aligned normal to the crack. Switching of the pole axis by 90degrees and 180degrees is examined for possible connection with domain switching. Opposing crack growth behavior can be obtained when the specification of mechanical stress sigma(infinity) and electric field E-infinity or (sigma(infinity), E-infinity) is replaced by strain e and electric displacement D-infinity or (epsilon(infinity), D-infinity). Mixed conditions (sigma(infinity),D-infinity) and (epsilon(infinity),E-infinity) are also considered. In general, crack growth is found to be larger when compared to that without the application of electric disturbances. This includes both the electric field and displacement. For the eight possible boundary conditions, crack growth retardation is identified only with (E-y(infinity),sigma(y)(infinity)) for negative E-y(infinity) and (D-y(infinity), epsilon(y)(infinity)) for positive D-y(infinity) while the mechanical conditions sigma(y)(infinity) or epsilon(y)infinity are not changed. Suitable combinations of the elastic, piezoelectric and dielectric material constants could also be made to suppress crack growth. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For simulating multi-scale complex flow fields it should be noted that all the physical quantities we are interested in must be simulated well. With limitation of the computer resources it is preferred to use high order accurate difference schemes. Because of their high accuracy and small stencil of grid points computational fluid dynamics (CFD) workers pay more attention to compact schemes recently. For simulating the complex flow fields the treatment of boundary conditions at the far field boundary points and near far field boundary points is very important. According to authors' experience and published results some aspects of boundary condition treatment for far field boundary are presented, and the emphasis is on treatment of boundary conditions for the upwind compact schemes. The consistent treatment of boundary conditions at the near boundary points is also discussed. At the end of the paper are given some numerical examples. The computed results with presented method are satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss coupling processes between a magnetic field and an unsteady plasma motion, and analyze the features of energy storage and conversions in active region. It is pointed out that the static force-free field is insufficient for a discussion of storage processes, and also the pure unsteady plasma rotation is not a perfect approach. In order to analyze the energy storage, we must consider the addition of poloidal plasma motion. The paper shows that because the unsteady poloidal flow is added and coupling occurs between the magnetic field and both the toroidal and the poloidal plasma flows, an unsteady process is maintained which changes the force-free factor with time. Hence, the energy in the lower levels can be transferred to the upper levels, and a considerable energy can be stored in the active region. Finally, another storage process is given which is due to the pure poloidal flow. The article shows that even if there is no twisted magnetic line of force, the energy in the lower levels may still be transferred to the upper levels and stored there.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a complete set of MHD equations have been solved by numerical calculations in an attempt to study the dynamical evolutionary processes of the initial equilibrium configuration and to discuss the energy storage mechanism of the solar atmosphere by shearing the magnetic field. The initial equilibrium configuration with an arch bipolar potential field obtained from the numerical solution is similar to the configuration in the vicinity of typical solar flare before its eruption. From the magnetic induction equation in the set of MHD equations and dealing with the non-linear coupling effects between the flow field and magnetic field, the quantitative relationship has been derived for their dynamical evolution. Results show that plasma shear motion at the bottom of the solar atmosphere causes the magnetic field to shear; meanwhile the magnetic field energy is stored in local regions. With the increase of time the local magnetic energy increases and it may reach an order of 4×10^25 J during a day. Thus the local storage of magnetic energy is large enough to trigger a big solar flare and can be considered as the energy source of solar flares. The energy storage mechanism by shearing the magnetic field can well explain the slow changes in solar active regions.