998 resultados para Sliding solutions
Resumo:
In a practical situation, it is difficult to model exact contact conditions clue to challenges involved in the estimation of contact forces, and relative displacements between the contacting bodies. Sliding and seizure conditions were simulated on first-of-a-kind displacement controlled system. Self-mated stainless steels have been investigated in detail. Categorization of contact conditions prevailing at the contact interface has been carried out based on the variation of coefficient of friction with number of cycles, and three-dimensional fretting loops. Surface and subsurface micro-cracks have been observed, and their characteristic shows strong dependence on loading conditions. Existence of shear bands in the subsurface region has been observed for high strain and low strain rate loading conditions. Studies also include the influence of initial surface roughness on the damage under two extreme contact conditions. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation deprotonation reaction of the 20 canonical alpha amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metad-ynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pK(a) values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pK(a) values with a mean relative error, with respect to experimental results, of 0.2 pK(a) units.
Resumo:
Dry sliding wear behavior of epoxy matrix syntactic foams filled with 20, 40 and 60 wt% fly ash cenosphere is reported based on response surface methodology. Empirical models are constructed and validated based on analysis of variance. Results show that syntactic foams have higher wear resistance than the matrix resin. Among the parameters studied, the applied normal load (F) had a prominent effect on wear rate, specific wear rate (w(s)) and coefficient of friction (mu). With increasing F, the wear rate increased, whereas ws and mu decreased. With increase in filler content, the wear rate and w(s) decreased, while the mu increased. With increase in sliding velocity as well as sliding distance, the wear rate and ws show decreasing trends. Microscopy revealed broken cenospheres forming debris and extensive deformation marks on the wear surface. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The tripeptide glutathione (GSH) is one of the most abundant peptides and the major repository for nonprotein sulfur in both animal and plant cells. It plays a critical role in intracellular oxidative stress management by the reversible formation of glutathione disulfide with the thiol-disulfide pair acting as a redox buffer. The state of charge of the ionizable groups of GSH can influence the redox couple, and hence the pK(a) value of the cysteine residue of GSH is critical to its functioning. Here we report ab initio Car-Parrinello molecular dynamics simulations of glutathione solvated by 200 water molecules, all of which are considered in the simulation. We show that the free-energy landscape for the protonation-deprotonation reaction of the cysteine residue of GSH computed using metadynamics sampling provides shift in the dissociation constant values as compared with the isolated accurate estimates of the pK(a) and correctly predicts the cysteine amino acid.
Resumo:
In this paper, we present the solutions of 1-D and 2-D non-linear partial differential equations with initial conditions. We approach the solutions in time domain using two methods. We first solve the equations using Fourier spectral approximation in the spatial domain and secondly we compare the results with the approximation in the spatial domain using orthogonal functions such as Legendre or Chebyshev polynomials as their basis functions. The advantages and the applicability of the two different methods for different types of problems are brought out by considering 1-D and 2-D nonlinear partial differential equations namely the Korteweg-de-Vries and nonlinear Schrodinger equation with different potential function. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Using in situ, high-speed imaging of a hard wedge sliding against pure aluminum, and image analysis by particle image velocimetry, the deformation field in sliding is mapped at high resolution. This model system is representative of asperity contacts on engineered surfaces and die-workpiece contacts in deformation and machining processes. It is shown that large, uniform plastic strains of 1-5 can be imposed at the Al surface, up to depths of 500 mu m, under suitable sliding conditions. The spatial strain and strain rate distributions are significantly influenced by the initial deformation state of the Al, e.g., extent of work hardening, and sliding incidence angle. Uniform straining occurs only under conditions of steady laminar flow in the metal. Large pre-strains and higher sliding angles promote breakdown in laminar flow due to surface fold formation or flow localization in the form of shear bands, thus imposing limits on uniform straining by sliding. Avoidance of unsteady sliding conditions, and selection of parameters like sliding angle, thus provides a way to control the deformation field. Key characteristics of the sliding deformation such as strain and strain rate, laminar flow, folding and prow formation are well predicted by finite element simulation. The deformation field provides a quantitative basis for interpreting wear particle formation. Implications for engineering functionally graded surfaces, sliding wear and ductile failure in metals are discussed.
Resumo:
A method to weakly correct the solutions of stochastically driven nonlinear dynamical systems, herein numerically approximated through the Eule-Maruyama (EM) time-marching map, is proposed. An essential feature of the method is a change of measures that aims at rendering the EM-approximated solution measurable with respect to the filtration generated by an appropriately defined error process. Using Ito's formula and adopting a Monte Carlo (MC) setup, it is shown that the correction term may be additively applied to the realizations of the numerically integrated trajectories. Numerical evidence, presently gathered via applications of the proposed method to a few nonlinear mechanical oscillators and a semi-discrete form of a 1-D Burger's equation, lends credence to the remarkably improved numerical accuracy of the corrected solutions even with relatively large time step sizes. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Development of computationally efficient and accurate attitude rate estimation algorithm using low-cost commercially available star sensor arrays and processing unit for micro-satellite mission is presented. Our design reduces the computational load of least square (LS)-based rate estimation method while maintaining the same accuracy compared to other rate estimation approaches. Furthermore, rate estimation accuracy is improved by using recently developed fast and accurate second-order sliding mode observer (SOSMO) scheme. It also gives robust estimation in the presence of modeling uncertainties, unknown disturbances, and measurement noise. Simulation study shows that rate estimation accuracy achieved by our LS-based method is comparable with other methods for a typical commercially available star sensor array. The robustness analysis of SOSMO with respect to measurement noise is also presented in this paper. Simulation test bench for a practical scenario of satellite rate estimation uses moment-of-inertia variation and environmental disturbances affecting a typical micro-satellite at 500km circular orbit. Comparison studies of SOSMO with 1-SMO and pseudo-linear Kalman filter show that satisfactory estimation accuracy is achieved by SOSMO.
Resumo:
Self-assembly has been recognized as an efficient tool for generating a wide range of functional, chemically, or physically textured surfaces for applications in small scale devices. In this work, we investigate the stability of thin films of polymer solutions. For low concentrations of polymer in the solution, long length scale dewetting patterns are obtained with wavelength approximately few microns. Whereas, for concentrations above a critical value, bimodal dispersion curves are obtained with the dominant wavelength being up to two orders smaller than the usual dewetting length scale. We further show that the short wavelength corresponds to the phase separation in the film resulting in uniformly distributed high and low concentration regions. Interestingly, due to the solvent entropy, at very high concentration values of polymer, a re-entrant behaviour is observed with the dominant length scale now again corresponding to the dewetting wavelength. Thus, we show that the binary films of polymer solutions provide additional control parameters that can be utilized for generating functional textured surfaces for various applications. (C) 2016 AIP Publishing LLC.
Resumo:
In this paper, sliding mode control-based impact time guidance laws are proposed. Even for large heading angle errors and negative initial closing speeds, the desired impact time is achieved by enforcing a sliding mode on a switching surface designed by using the concepts of collision course and estimated time-to-go. Unlike existing guidance laws, the proposed guidance strategy achieves impact time successfully even when the estimated interception time is greater than the desired impact time. Simulation results are also presented.
Resumo:
Using density functional theory (DFT) we investigate the changes in electronic and transport properties of graphene bilayer caused by sliding one of the layers. Change in stacking pattern breaks the lattice symmetry, which results in Lifshitz transition together with the modulation of the electronic structure. Going from AA to AB stacking by sliding along armchair direction leads to a drastic transition in electronic structure from linear to parabolic dispersion. Our transport calculations show a significant change in the overall transmission value for large sliding distances along zigzag direction. The increase in interlayer coupling with normal compressive strain increases the overlapping of conduction and valence band, which leads to further shift in the Dirac points and an enhancement in the Lifshitz transition. The ability to tune the topology of band structure by sliding and/or applying normal compressive strain will open doors for controlled tuning of many physical phenomenon such as Landau levels and quantum Hall effect in graphene. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We report the transition from robust ferromagnetism to a spin- glass state in nanoparticulate La0.7Sr0.3MnO3 through solid solution with BaTiO3. The field- and temperature-dependent magnetization and the frequency-dependent ac magnetic susceptibility measurements strongly indicate the existence of a spin- glass state in the system, which is further confirmed from memory effect measurements. The breaking of long-range ordering into short-range magnetic domains is further investigated using density-functional calculations. We show that Ti ions remain magnetically inactive due to insufficient electron leakage from La0.7Sr0.3MnO3 to the otherwise unoccupied Ti-d states. This results in the absence of a Mn-Ti-Mn spin exchange interaction and hence the breaking of the long-range ordering. Total-energy calculations suggest that the segregation of nonmagnetic Ti ions leads to the formation of short-range ferromagnetic Mn domains.
Resumo:
Structures with governing equations having identical inertial terms but somewhat differing stiffness terms can be termed flexurally analogous. An example of such a structure includes an axially loaded non-uniform beam and an unloaded uniform beam, for which an exact solution exists. We find that there exist shared eigenpairs (frequency and mode shapes) for a particular mode between such structures. Non-uniform beams with uniform axial loads, gravity loaded beams and rotating beams are considered and shared eigenpairs with uniform beams are found. In general, the derived flexural stiffness functions (FSF's) for the non-uniform beams required for the existence of shared eigenpair have internal singularities, but some of the singularities can be removed by an appropriate selection of integration constants using the theory of limits. The derived functions yield an insight into the relationship between the axial load and flexural stiffness of axially loaded beam structures. The derived functions can serve as benchmark solutions for numerical methods. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
There are many fault block fields in China. A fault block field consists of fault pools. The small fault pools can be viewed as the closed circle reservoirs in some case. In order to know the pressure change of the developed formation and provide the formation data for developing the fault block fields reasonably, the transient flow should be researched. In this paper, we use the automatic mesh generation technology and the finite element method to solve the transient flow problem for the well located in the closed circle reservoir, especially for the well located in an arbitrary position in the closed circle reservoir. The pressure diffusion process is visualized and the well-location factor concept is first proposed in this paper. The typical curves of pressure vs time for the well with different well-location factors are presented. By comparing numerical results with the analytical solutions of the well located in the center of the closed circle reservoir, the numerical method is verified.