964 resultados para Shears (Machine-tools)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent time CFD tools have become increasingly useful in the engineering design studies especially in the area of aerospace vehicles. This is largely due to the advent of high speed computing platforms in addition to the development of new efficient algorithms. The algorithms based on kinetic schemes have been shown to be very robust and further meshless methods offer certain advantages over the other methods. Preliminary investigations of blood flow visualization through artery using CFD tool have shown encouraging results which further needs to be verified and validated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Core Vector Machine(CVM) is suitable for efficient large-scale pattern classification. In this paper, a method for improving the performance of CVM with Gaussian kernel function irrespective of the orderings of patterns belonging to different classes within the data set is proposed. This method employs a selective sampling based training of CVM using a novel kernel based scalable hierarchical clustering algorithm. Empirical studies made on synthetic and real world data sets show that the proposed strategy performs well on large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper. we propose a novel method using wavelets as input to neural network self-organizing maps and support vector machine for classification of magnetic resonance (MR) images of the human brain. The proposed method classifies MR brain images as either normal or abnormal. We have tested the proposed approach using a dataset of 52 MR brain images. Good classification percentage of more than 94% was achieved using the neural network self-organizing maps (SOM) and 98% front support vector machine. We observed that the classification rate is high for a Support vector machine classifier compared to self-organizing map-based approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses a method for scaling SVM with Gaussian kernel function to handle large data sets by using a selective sampling strategy for the training set. It employs a scalable hierarchical clustering algorithm to construct cluster indexing structures of the training data in the kernel induced feature space. These are then used for selective sampling of the training data for SVM to impart scalability to the training process. Empirical studies made on real world data sets show that the proposed strategy performs well on large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an SIMD machine which has been tuned to execute low-level vision algorithms employing the relaxation labeling paradigm. Novel features of the design include: 1. (1) a communication scheme capable of window accessing under a single instruction. 2. (2) flexible I/O instructions to load overlapped data segments; and 3. (3) data-conditional instructions which can be nested to an arbitrary degree. A time analysis of the stereo correspondence problem, as implemented on a simulated version of the machine using the probabilistic relaxation technique, shows a speed up of almost N2 for an N × N array of PEs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper mainly concentrates on the application of the direct torque control (DTC) technique for the induction machine based integrated startergenerator (ISG) for automobile applications. It also discusses in brief about the higher DC bus voltage requirements in the automobiles i.e. present 14V system vs. 42V system to meet the power requirements, modes of operation of ISG, electric machine and the drive selection for the ISG,description of DTC technique, simulation and experimental results, and implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of lipid compositions from biological samples has become increasingly important. Lipids have a role in cardiovascular disease, metabolic syndrome and diabetes. They also participate in cellular processes such as signalling, inflammatory response, aging and apoptosis. Also, the mechanisms of regulation of cell membrane lipid compositions are poorly understood, partially because a lack of good analytical methods. Mass spectrometry has opened up new possibilities for lipid analysis due to its high resolving power, sensitivity and the possibility to do structural identification by fragment analysis. The introduction of Electrospray ionization (ESI) and the advances in instrumentation revolutionized the analysis of lipid compositions. ESI is a soft ionization method, i.e. it avoids unwanted fragmentation the lipids. Mass spectrometric analysis of lipid compositions is complicated by incomplete separation of the signals, the differences in the instrument response of different lipids and the large amount of data generated by the measurements. These factors necessitate the use of computer software for the analysis of the data. The topic of the thesis is the development of methods for mass spectrometric analysis of lipids. The work includes both computational and experimental aspects of lipid analysis. The first article explores the practical aspects of quantitative mass spectrometric analysis of complex lipid samples and describes how the properties of phospholipids and their concentration affect the response of the mass spectrometer. The second article describes a new algorithm for computing the theoretical mass spectrometric peak distribution, given the elemental isotope composition and the molecular formula of a compound. The third article introduces programs aimed specifically for the analysis of complex lipid samples and discusses different computational methods for separating the overlapping mass spectrometric peaks of closely related lipids. The fourth article applies the methods developed by simultaneously measuring the progress curve of enzymatic hydrolysis for a large number of phospholipids, which are used to determine the substrate specificity of various A-type phospholipases. The data provides evidence that the substrate efflux from bilayer is the key determining factor for the rate of hydrolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel genetic algorithm is developed by generating artificial chromosomes with probability control to solve the machine scheduling problems. Generating artificial chromosomes for Genetic Algorithm (ACGA) is closely related to Evolutionary Algorithms Based on Probabilistic Models (EAPM). The artificial chromosomes are generated by a probability model that extracts the gene information from current population. ACGA is considered as a hybrid algorithm because both the conventional genetic operators and a probability model are integrated. The ACGA proposed in this paper, further employs the ``evaporation concept'' applied in Ant Colony Optimization (ACO) to solve the permutation flowshop problem. The ``evaporation concept'' is used to reduce the effect of past experience and to explore new alternative solutions. In this paper, we propose three different methods for the probability of evaporation. This probability of evaporation is applied as soon as a job is assigned to a position in the permutation flowshop problem. Experimental results show that our ACGA with the evaporation concept gives better performance than some algorithms in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene mapping is a systematic search for genes that affect observable characteristics of an organism. In this thesis we offer computational tools to improve the efficiency of (disease) gene-mapping efforts. In the first part of the thesis we propose an efficient simulation procedure for generating realistic genetical data from isolated populations. Simulated data is useful for evaluating hypothesised gene-mapping study designs and computational analysis tools. As an example of such evaluation, we demonstrate how a population-based study design can be a powerful alternative to traditional family-based designs in association-based gene-mapping projects. In the second part of the thesis we consider a prioritisation of a (typically large) set of putative disease-associated genes acquired from an initial gene-mapping analysis. Prioritisation is necessary to be able to focus on the most promising candidates. We show how to harness the current biomedical knowledge for the prioritisation task by integrating various publicly available biological databases into a weighted biological graph. We then demonstrate how to find and evaluate connections between entities, such as genes and diseases, from this unified schema by graph mining techniques. Finally, in the last part of the thesis, we define the concept of reliable subgraph and the corresponding subgraph extraction problem. Reliable subgraphs concisely describe strong and independent connections between two given vertices in a random graph, and hence they are especially useful for visualising such connections. We propose novel algorithms for extracting reliable subgraphs from large random graphs. The efficiency and scalability of the proposed graph mining methods are backed by extensive experiments on real data. While our application focus is in genetics, the concepts and algorithms can be applied to other domains as well. We demonstrate this generality by considering coauthor graphs in addition to biological graphs in the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XVIII IUFRO World Congress, Ljubljana 1986.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In rapid parallel magnetic resonance imaging, the problem of image reconstruction is challenging. Here, a novel image reconstruction technique for data acquired along any general trajectory in neural network framework, called ``Composite Reconstruction And Unaliasing using Neural Networks'' (CRAUNN), is proposed. CRAUNN is based on the observation that the nature of aliasing remains unchanged whether the undersampled acquisition contains only low frequencies or includes high frequencies too. Here, the transformation needed to reconstruct the alias-free image from the aliased coil images is learnt, using acquisitions consisting of densely sampled low frequencies. Neural networks are made use of as machine learning tools to learn the transformation, in order to obtain the desired alias-free image for actual acquisitions containing sparsely sampled low as well as high frequencies. CRAUNN operates in the image domain and does not require explicit coil sensitivity estimation. It is also independent of the sampling trajectory used, and could be applied to arbitrary trajectories as well. As a pilot trial, the technique is first applied to Cartesian trajectory-sampled data. Experiments performed using radial and spiral trajectories on real and synthetic data, illustrate the performance of the method. The reconstruction errors depend on the acceleration factor as well as the sampling trajectory. It is found that higher acceleration factors can be obtained when radial trajectories are used. Comparisons against existing techniques are presented. CRAUNN has been found to perform on par with the state-of-the-art techniques. Acceleration factors of up to 4, 6 and 4 are achieved in Cartesian, radial and spiral cases, respectively. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New materials in concrete constructions have been widely used to improve various properties such as impact resistance, strength and durability. Polymer modified concrete is one of the new materials which has been developed for potential application in the construction industry. This Paper describes the use of polymer latex for foundation blocks subjected to dynamic loads. Experiments were conducted using ordinary concrete and latex modified concrete footings of three different thicknesses, for three static loads at four excitation levels. Experimental results have revealed that the amplitude of resonance is reduced considerably in the latex modified concrete footings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of minimizing the total completion time on a single batch processing machine. The set of jobs to be scheduled can be partitioned into a number of families, where all jobs in the same family have the same processing time. The machine can process at most B jobs simultaneously as a batch, and the processing time of a batch is equal to the processing time of the longest job in the batch. We analyze that properties of an optimal schedule and develop a dynamic programming algorithm of polynomial time complexity when the number of job families is fixed. The research is motivated by the problem of scheduling burn-in ovens in the semiconductor industry