993 resultados para SIMPLE ASSAY
Resumo:
Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.
Resumo:
The disappearance of lytic, protective antibodies (Abs) from the serum of patients with Chagas disease is accepted as a reliable indicator of parasitological cure. The efficiency of a chemiluminescent enzyme-linked immunosorbent assay based on a purified, trypomastigote-derived glycosylphosphatidylinositol-anchored mucin antigen for the serologic detection of lytic Abs against Trypanosoma cruzi was evaluated in a nonendemic setting using a panel of 92 positive and 58 negative human sera. The technique proved to be highly sensitive {100%; 95% confidence interval (CI) = 96-100} and specific (98.3%; 95% CI = 90.7-99.7), with a kappa score of 0.99. Therefore, this assay can be used to detect active T. cruzi infection and to monitor trypanosomicidal treatment.
Resumo:
Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA) in detecting isoniazid (INH) and rifampicin (RIF) resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results.
Resumo:
Drug-resistant tuberculosis (TB) threatens global TB control and is a major public health concern in several countries. We therefore developed a multiplex assay (LINE-TB/MDR) that is able to identify the most frequent mutations related to rifampicin (RMP) and isoniazid (INH) resistance. The assay is based on multiplex polymerase chain reaction, membrane hybridisation and colorimetric detection targeting of rpoB and katG genes, as well as the inhA promoter, which are all known to carry specific mutations associated with multidrug-resistant TB (MDR-TB). The assay was validated on a reference panel of 108 M. tuberculosis isolates that were characterised by the proportion method and by DNA sequencing of the targets. When comparing the performance of LINE-TB/MDR with DNA sequencing, the sensitivity, specificity and agreement were 100%, 100% and 100%, respectively, for RMP and 77.6%, 90.6% and 88.9%, respectively, for INH. Using drug sensibility testing as a reference standard, the performance of LINE-TB/MDR regarding sensitivity, specificity and agreement was 100%, 100% and 100% (95%), respectively, for RMP and 77%, 100% and 88.7% (82.2-95.1), respectively, for INH. LINE-TB/MDR was compared with GenoType MTBDRplus for 65 isolates, resulting in an agreement of 93.6% (86.7-97.5) for RIF and 87.4% (84.3-96.2) for INH. LINE-TB/MDR warrants further clinical validation and may be an affordable alternative for MDR-TB diagnosis.
Resumo:
It has been reported that patients with progressive tuberculosis (TB) express abundant amounts of the antimicrobial peptides (AMPs) cathelicidin (LL-37) and human neutrophil peptide-1 (HNP-1) in circulating cells, whereas latent TB infected donors showed no differences when compared with purified protein derivative (PPD) and QuantiFERON®-TB Gold (QFT)-healthy individuals. The aim of this study was to determine whether LL-37 and HNP-1 production correlates with higher tuberculin skin test (TST) and QFT values in TB household contacts. Twenty-six TB household contact individuals between 26-58 years old TST and QFT positive with at last two years of latent TB infection were recruited. AMPs production by polymorphonuclear cells was determined by flow cytometry and correlation between TST and QFT values was analysed. Our results showed that there is a positive correlation between levels of HNP-1 and LL-37 production with reactivity to TST and/or QFT levels. This preliminary study suggests the potential use of the expression levels of these peptides as biomarkers for progression in latent infected individuals.
Resumo:
The identification of mycobacteria is essential because tuberculosis (TB) and mycobacteriosis are clinically indistinguishable and require different therapeutic regimens. The traditional phenotypic method is time consuming and may last up to 60 days. Indeed, rapid, affordable, specific and easy-to-perform identification methods are needed. We have previously described a polymerase chain reaction-based method called a mycobacteria mobility shift assay (MMSA) that was designed for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM) species identification. The aim of this study was to assess the MMSA for the identification of MTC and NTM clinical isolates and to compare its performance with that of the PRA-hsp65 method. A total of 204 clinical isolates (102 NTM and 102 MTC) were identified by the MMSA and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing fragments of the 16S rRNA and hsp65 genes. Both methods correctly identified all MTC isolates. Among the NTM isolates, the MMSA alone assigned 94 (92.2%) to a complex or species, whereas the PRA-hsp65 method assigned 100% to a species. A 91.5% agreement was observed for the 94 NTM isolates identified by both methods. The MMSA provided correct identification for 96.8% of the NTM isolates compared with 94.7% for PRA-hsp65. The MMSA is a suitable auxiliary method for routine use for the rapid identification of mycobacteria.
Resumo:
INTRODUCTION: Rivaroxaban (RXA) is licensed for prophylaxis of venous thromboembolism after major orthopaedic surgery of the lower limbs. Currently, no test to quantify RXA in plasma has been validated in an inter-laboratory setting. Our study had three aims: to assess i) the feasibility of RXA quantification with a commercial anti-FXa assay, ii) its accuracy and precision in an inter-laboratory setting, and iii) the influence of 10mg of RXA on routine coagulation tests. METHODS: The same chromogenic anti-FXa assay (Hyphen BioMed) was used in all participating laboratories. RXA calibrators and sets of blinded probes (aim ii.) were prepared in vitro by spiking normal plasma. The precise RXA content was assessed by high-pressure liquid chromatography-tandem mass spectrometry. For ex-vivo studies (aim iii), plasma samples from 20 healthy volunteers taken before and 2 - 3hours after ingestion of 10mg of RXA were analyzed by participating laboratories. RESULTS: RXA can be assayed chromogenically. Among the participating laboratories, the mean accuracy and the mean coefficient of variation for precision of RXA quantification were 7.0% and 8.8%, respectively. Mean RXA concentration was 114±43μg/L .RXA significantly altered prothrombin time, activated partial thromboplastin time, factor analysis for intrinsic and extrinsic factors. Determinations of thrombin time, fibrinogen, FXIII and D-Dimer levels were not affected. CONCLUSIONS: RXA plasma levels can be quantified accurately and precisely by a chromogenic anti-FXa assay on different coagulometers in different laboratories. Ingestion of 10mg RXA results in significant alterations of both PT- and aPTT-based coagulation assays.
Resumo:
A cohort of 123 adult contacts was followed for 18‐24 months (86 completed the follow-up) to compare conversion and reversion rates based on two serial measures of QuantiFERON (QFT) and tuberculin skin test (TST) (PPD from TUBERSOL, Aventis Pasteur, Canada) for diagnosing latent tuberculosis (TB) in household contacts of TB patients using conventional (C) and borderline zone (BZ) definitions. Questionnaires were used to obtain information regarding TB exposure, TB risk factors and socio-demographic data. QFT (IU/mL) conversion was defined as <0.35 to ≥0.35 (C) or <0.35 to >0.70 (BZ) and reversion was defined as ≥0.35 to <0.35 (C) or ≥0.35 to <0.20 (BZ); TST (mm) conversion was defined as <5 to ≥5 (C) or <5 to >10 (BZ) and reversion was defined as ≥5 to <5 (C). The QFT conversion and reversion rates were 10.5% and 7% with C and 8.1% and 4.7% with the BZ definitions, respectively. The TST rates were higher compared with QFT, especially with the C definitions (conversion 23.3%, reversion 9.3%). The QFT conversion and reversion rates were higher for TST ≥5; for TST, both rates were lower for QFT <0.35. No risk factors were associated with the probability of converting or reverting. The inconsistency and apparent randomness of serial testing is confusing and adds to the limitations of these tests and definitions to follow-up close TB contacts.
Resumo:
Actualmente no se disponen de marcadores biológicos específicos para la cáncer de próstata produciéndose en muchas ocasiones biopsias prostáticas innecesarias o un sobretratamientos para cánceres indolentes. Existen cada vez más un número mayor de publicaciones sobre cómo los polimorfismos de nucleótido simple (SNP) se relacionan con la susceptibilidad al cáncer de próstata o predecir con mayor precisión qué grado de agresividad adquiere la enfermedad. Se presenta una revisión bibliográfica de las investigaciones publicadas en PubMed desde el año 2000 hasta el 2012 que ponen de manifiesto la relación de los SNP con el riesgo a padecer cáncer de próstata y con sus características anatomopatológicas.
Resumo:
Routine screening of patients at risk of hepatitis C virus (HCV) infection has become a priority given recent improvements in therapeutic options and the asymptomatic nature of most chronic infections. The aim of this study was to evaluate the performance of the Elecsys® Anti-HCV II assay, a new qualitative antibody immunoassay, compared with currently available assays, and assess its suitability for routine diagnostic testing. The sensitivity of the Elecsys® Anti-HCV II, ARCHITECT® Anti-HCV, AxSYM® HCV 3.0, PRISM® HCV, Vitros® ECi Anti-HCV, Elecsys® Anti-HCV, and ADVIA Centaur® HCV assays was compared using commercially available seroconversion panels and samples from patients known to be HCV positive and infected with HCV genotypes 1-6. Specificity was investigated using samples from blood donors, unselected hospitalized patients, and patients with potential cross-reacting factors or from high-risk groups. The Elecsys® Anti-HCV II assay detected more positive bleeds than the comparator assays, was more sensitive in recognizing early HCV infection, and correctly identified all 765 samples known to be HCV positive, regardless of genotype. The overall specificity of the Elecsys(®) Anti-HCV II assay was 99.84% (n = 6,850) using blood donor samples, 99.66% (n = 3,922) using samples from unselected hospitalized patients, and 99.66% (n = 2,397) using samples from patients with potentially cross-reacting factors or from high-risk groups. The specificity of the Elecsys® Anti-HCV II assay was superior or equal to the comparator assays. In conclusion, the Elecsys® Anti-HCV II assay is a sensitive and specific assay suitable for routine use in the reliable detection of anti-HCV antibodies. J. Med. Virol. 85:1362-1368, 2013. © 2013 Wiley Periodicals, Inc.
Resumo:
Human herpesvirus 6 (HHV-6) may cause severe complications after haematopoietic stem cell transplantation (HSCT). Monitoring this virus and providing precise, rapid and early diagnosis of related clinical diseases, constitute essential measures to improve outcomes. A prospective survey on the incidence and clinical features of HHV-6 infections after HSCT has not yet been conducted in Brazilian patients and the impact of this infection on HSCT outcome remains unclear. A rapid test based on real-time quantitative polymerase chain reaction (qPCR) has been optimised to screen and quantify clinical samples for HHV-6. The detection step was based on reaction with TaqMan® hydrolysis probes. A set of previously described primers and probes have been tested to evaluate efficiency, sensitivity and reproducibility. The target efficiency range was 91.4% with linearity ranging from 10-106 copies/reaction and a limit of detection of five copies/reaction or 250 copies/mL of plasma. The qPCR assay developed in the present study was simple, rapid and sensitive, allowing the detection of a wide range of HHV-6 loads. In conclusion, this test may be useful as a practical tool to help elucidate the clinical relevance of HHV-6 infection and reactivation in different scenarios and to determine the need for surveillance.
Resumo:
We describe a simple method for detection of Plasmodium vivaxand Plasmodium falciparum infection in anophelines using a triplex TaqMan real-time polymerase chain reaction (PCR) assay (18S rRNA). We tested the assay on Anopheles darlingi and Anopheles stephensi colony mosquitoes fed withPlasmodium-infected blood meals and in duplicate on field collected An. darlingi. We compared the real-time PCR results of colony-infected and field collected An. darlingi, separately, to a conventional PCR method. We determined that a cytochromeb-PCR method was only 3.33% as sensitive and 93.38% as specific as our real-time PCR assay with field-collected samples. We demonstrate that this assay is sensitive, specific and reproducible.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants that improve plant nutrient acquisition and promote plant diversity. Although within-species genetic differences among AMF have been shown to differentially affect plant growth, very little is actually known about the degree of genetic diversity in AMF populations. This is largely because of difficulties in isolation and cultivation of the fungi in a clean system allowing reliable genotyping to be performed. A population of the arbuscular mycorrhizal fungus Glomus intraradices growing in an in vitro cultivation system was studied using newly developed simple sequence repeat (SSR), nuclear gene intron and mitochondrial ribosomal gene intron markers. The markers revealed a strong differentiation at the nuclear and mitochondrial level among isolates. Genotypes were nonrandomly distributed among four plots showing genetic subdivisions in the field. Meanwhile, identical genotypes were found in geographically distant locations. AMF genotypes showed significant preferences to different host plant species (Glycine max, Helianthus annuus and Allium porrum) used before the fungal in vitro culture establishment. Host plants in a field could provide a heterogeneous environment favouring certain genotypes. Such preferences may partly explain within-population patterns of genetic diversity.
Resumo:
Chronic Chagas disease diagnosis relies on laboratory tests due to its clinical characteristics. The aim of this research was to review commercial enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) diagnostic test performance. Performance of commercial ELISA or PCR for the diagnosis of chronic Chagas disease were systematically searched in PubMed, Scopus, Embase, ISI Web, and LILACS through the bibliography from 1980-2014 and by contact with the manufacturers. The risk of bias was assessed with QUADAS-2. Heterogeneity was estimated with the I2 statistic. Accuracies provided by the manufacturers usually overestimate the accuracy provided by academia. The risk of bias is high in most tests and in most QUADAS dimensions. Heterogeneity is high in either sensitivity, specificity, or both. The evidence regarding commercial ELISA and ELISA-rec sensitivity and specificity indicates that there is overestimation. The current recommendation to use two simultaneous serological tests can be supported by the risk of bias analysis and the amount of heterogeneity but not by the observed accuracies. The usefulness of PCR tests are debatable and health care providers should not order them on a routine basis. PCR may be used in selected cases due to its potential to detect seronegative subjects.
Resumo:
Isothermal microcalorimetry (IMC) has been used in the past to monitor metabolic activities in living systems. A few studies have used it on ecological research. In this study, IMC was used to monitor oxalotrophic activity, a widespread bacterial metabolism found in the environment, and particularly in soils. Six model strains were inoculated in solid angle media with K-oxalate as the sole carbon source. Cupriavidus oxalaticus, Cupriavidus necator, and Streptomyces violaceoruber presented the highest activity (91, 40, and 55 μW, respectively) and a maximum growth rate (μmax h(-1) ) of 0.264, 0.185, and 0.199, respectively, among the strains tested. These three strains were selected to test the incidence of different oxalate sources (Ca, Cu, and Fe-oxalate salts) in the metabolic activity. The highest activity was obtained in Ca-oxalate for C. oxalaticus. Similar experiments were carried out with a model soil to test whether this approach can be used to measure oxalotrophic activity in field samples. Although measuring oxalotrophic activity in a soil was challenging, there was a clear effect of the amendment with oxalate on the metabolic activity measured in soil. The correlation between heat flow and growth suggests that IMC analysis is a powerful method to monitor bacterial oxalotrophic activity