909 resultados para SHORT-CONTACT TIMES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is the result of an investigation of a Queensland example of curriculum reform based on outcomes, a type of reform common to many parts of the world during the last decade. The purpose of the investigation was to determine the impact of outcomes on teacher perspectives of professional practice. The focus was chosen to permit investigation not only of changes in behaviour resulting from the reform but also of teachers' attitudes and beliefs developed during implementation. The study is based on qualitative methodology, chosen because of its suitability for the investigation of attitudes and perspectives. The study exploits the researcher's opportunities for prolonged, direct contact with groups of teachers through the selection of an over-arching ethnography approach, an approach designed to capture the holistic nature of the reform and to contextualise the data within a broad perspective. The selection of grounded theory as a basis for data analysis reflects the open nature of this inquiry and demonstrates the study's constructivist assumptions about the production of knowledge. The study also constitutes a multi-site case study by virtue of the choice of three individual school sites as objects to be studied and to form the basis of the report. Three primary school sites administered by Brisbane Catholic Education were chosen as the focus of data collection. Data were collected from three school sites as teachers engaged in the first year of implementation of Student Performance Standards, the Queensland version of English outcomes based on the current English syllabus. Teachers' experience of outcomes-driven curriculum reform was studied by means of group interviews conducted at individual school sites over a period of fourteen months, researcher observations and the collection of artefacts such as report cards. Analysis of data followed grounded theory guidelines based on a system of coding. Though classification systems were not generated prior to data analysis, the labelling of categories called on standard, non-idiosyncratic terminology and analytic frames and concepts from existing literature wherever practicable in order to permit possible comparisons with other related research. Data from school sites were examined individually and then combined to determine teacher understandings of the reform, changes that have been made to practice and teacher responses to these changes in terms of their perspectives of professionalism. Teachers in the study understood the reform as primarily an accountability mechanism. Though teachers demonstrated some acceptance of the intentions of the reform, their responses to its conceptualisation, supporting documentation and implications for changing work practices were generally characterised by reduced confidence, anger and frustration. Though the impact of outcomes-based curriculum reform must be interpreted through the inter-relationships of a broad range of elements which comprise teachers' work and their attitudes towards their work, it is proposed that the substantive findings of the study can be understood in terms of four broad themes. First, when the conceptual design of outcomes did not serve teachers' accountability requirements and outcomes were perceived to be expressed in unfamiliar technical language, most teachers in the study lost faith in the value of the reform and lost confidence in their own abilities to understand or implement it. Second, this reduction of confidence was intensified when the scope of outcomes was outside the scope of the teachers' existing curriculum and assessment planning and teachers were confronted with the necessity to include aspects of syllabuses or school programs which they had previously omitted because of a lack of understanding or appreciation. The corollary was that outcomes promoted greater syllabus fidelity when frameworks were closely aligned. Third, other benefits the teachers associated with outcomes included the development of whole school curriculum resources and greater opportunity for teacher collaboration, particularly among schools. The teachers, however, considered a wide range of factors when determining the overall impact of the reform, and perceived a number of them in terms of the costs of implementation. These included the emergence of ethical dilemmas concerning relationships with students, colleagues and parents, reduced individual autonomy, particularly with regard to the selection of valued curriculum content and intensification of workload with the capacity to erode the relationships with students which teachers strongly associated with the rewards of their profession. Finally, in banding together at the school level to resist aspects of implementation, some teachers showed growing awareness of a collective authority capable of being exercised in response to top-down reform. These findings imply that Student Performance Standards require review and, additional implementation resourcing to support teachers through times of reduced confidence in their own abilities. Outcomes prove an effective means of high-fidelity syllabus implementation, and, provided they are expressed in an accessible way and aligned with syllabus frameworks and terminology, should be considered for inclusion in future syllabuses across a range of learning areas. The study also identifies a range of unintended consequences of outcomes-based curriculum and acknowledges the complexity of relationships among all the aspects of teachers' work. It also notes that the impact of reform on teacher perspectives of professional practice may alter teacher-teacher and school-system relationships in ways that have the potential to influence the effectiveness of future curriculum reform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogel polymers are used for the manufacture of soft (or disposable) contact lenses worldwide today, but have a tendency to dehydrate on the eye. In vitro methods that can probe the potential for a given hydrogel polymer to dehydrate in vivo are much sought after. Nuclear magnetic resonance (NMR) has been shown to be effective in characterising water mobility and binding in similar systems (Barbieri, Quaglia et al., 1998, Larsen, Huff et al., 1990, Peschier, Bouwstra et al., 1993), predominantly through measurement of the spin-lattice relaxation time (T1), the spinspin relaxation time (T2) and the water diffusion coefficient (D). The aim of this work was to use NMR to quantify the molecular behaviour of water in a series of commercially available contact lens hydrogels, and relate these measurements to the binding and mobility of the water, and ultimately the potential for the hydrogel to dehydrate. As a preliminary study, in vitro evaporation rates were measured for a set of commercial contact lens hydrogels. Following this, comprehensive measurement of the temperature and water content dependencies of T1, T2 and D was performed for a series of commercial hydrogels that spanned the spectrum of equilibrium water content (EWC) and common compositions of contact lenses that are manufactured today. To quantify material differences, the data were then modelled based on theory that had been used for similar systems in the literature (Walker, Balmer et al., 1989, Hills, Takacs et al., 1989). The differences were related to differences in water binding and mobility. The evaporative results suggested that the EWC of the material was important in determining a material's potential to dehydrate in this way. Similarly, the NMR water self-diffusion coefficient was also found to be largely (if not wholly) determined by the WC. A specific binding model confirmed that the we was the dominant factor in determining the diffusive behaviour, but also suggested that subtle differences existed between the materials used, based on their equilibrium we (EWC). However, an alternative modified free volume model suggested that only the current water content of the material was important in determining the diffusive behaviour, and not the equilibrium water content. It was shown that T2 relaxation was dominated by chemical exchange between water and exchangeable polymer protons for materials that contained exchangeable polymer protons. The data was analysed using a proton exchange model, and the results were again reasonably correlated with EWC. Specifically, it was found that the average water mobility increased with increasing EWe approaching that of free water. The T1 relaxation was also shown to be reasonably well described by the same model. The main conclusion that can be drawn from this work is that the hydrogel EWe is an important parameter, which largely determines the behaviour of water in the gel. Higher EWe results in a hydrogel with water that behaves more like bulk water on average, or is less strongly 'bound' on average, compared with a lower EWe material. Based on the set of materials used, significant differences due to composition (for materials of the same or similar water content) could not be found. Similar studies could be used in the future to highlight hydrogels that deviate significantly from this 'average' behaviour, and may therefore have the least/greatest potential to dehydrate on the eye.