978 resultados para Pulsed laser ablation in liquids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct measurements of the absorbed energy in femtosecond laser inscription in a range of materials is performed. Key absorption parameters are characterized by fitting numerical modelling to measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel distributed strain sensor is presented utilizing the strain dependence of the frequency at which the Brillouin loss is maximized in the interaction between a cw laser and a pulsed laser. A strain resolution of 20 µ with a spatial resolution of 5 m has been achieved with a 22 km sensing length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel distributed sensor that utilizes the temperature and strain dependence of the frequency at which the Brillouin loss is maximized in the interaction between a cw laser and a pulsed laser. With a 22-km sensing length, a strain resolution of 20 µ? and a temperature resolution of 2°C have been achieved with a spatial resolution of 5 m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel distributed temperature sensor that uses the temperature dependence of the frequency at which the loss is maximized in the interaction between a cw laser and a pulsed laser. With a 32-km sensing length, a temperature resolution of 1°C has been achieved; it is also shown that a spatial resolution of 5 m may be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel distributed temperature sensor that uses the temperature dependence of the frequency at which the loss is maximized in the interaction between a cw laser and a pulsed laser. With a 32-km sensing length, a temperature resolution of 1°C has been achieved; it is also shown that a spatial resolution of 5 m may be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-seeded, gain-switched operation of an InGaN multi-quantum-well laser diode has been demonstrated for the first time. An external cavity comprising Littrow geometry was implemented for spectral control of pulsed operation. The feedback was optimized by adjusting the external cavity length and the driving frequency of the laser. The generated pulses had a peak power in excess of 400mW, a pulse duration of 60ps, a spectral linewidth of 0.14nm and maximum side band suppression ratio of 20dB. It was tunable within the range of 3.6nm centered at a wavelength of 403nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of numerical modelling of energy deposition in single-shot femtosecond laser inscription for fundamental and second harmonics, which shows that second harmonic is more efficient considering the amount of absorbed energy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interface effects on ion-irradiation tolerance properties are investigated in nanolayered TiN/AlN films with individual layer thickness varied from 5 nm to 50 nm, prepared by pulsed laser deposition. Evolution of the microstructure and hardness of the multilayer films are examined on the specimens before and after He ion-implantation to a fluence of 4 × 10 m at 50 keV. The suppression of amorphization in AlN layers and the reduction of radiation-induced softening are observed in all nanolayer films. A clear size-dependent radiation tolerance characteristic is observed in the nanolayer films, i.e., the samples with the optimum layer thickness from 10 nm to 20 nm show the best ion irradiation tolerance properties, and a critical layer thickness of more than 5 nm is necessary to prevent severe intermixing. This study suggests that both the interface characteristics and the critical length scale (layer thickness) contribute to the reduction of the radiation-induced damages in nitride-based ceramic materials. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel distributed strain sensor is presented utilizing the strain dependence of the frequency at which the Brillouin loss is maximized in the interaction between a cw laser and a pulsed laser. A strain resolution of 20 µ with a spatial resolution of 5 m has been achieved with a 22 km sensing length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of numerical modelling of energy deposition in single-shot femtosecond laser inscription for fundamental and second harmonics, which shows that second harmonic is more efficient considering the amount of absorbed energy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performance optimisation of ultra-long Raman laser links is studied theoretically and experimentally. We observe that it is possible to reduce signal power excursion by adjusting FBG reflectivity without compromising pump efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct measurements of the absorbed energy in femtosecond laser inscription in a range of materials is performed. Key absorption parameters are characterized by fitting numerical modelling to measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel distributed sensor that utilizes the temperature and strain dependence of the frequency at which the Brillouin loss is maximized in the interaction between a cw laser and a pulsed laser. With a 22-km sensing length, a strain resolution of 20 µ? and a temperature resolution of 2°C have been achieved with a spatial resolution of 5 m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a CW tunable compact all-room-temperature laser system in the visible spectral region from 567.7 nm to 629.1 nm, by frequency doubling in a periodically-poled KTP waveguide crystal using a tunable quantum-dot external-cavity diode laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitride materials and coatings have attracted extensive research interests for various applications in advanced nuclear reactors due to their unique combination of physical properties, including high temperature stability, excellent corrosion resistance, superior mechanical property and good thermal conductivity. In this paper, the ion irradiation effects in nanocrystalline TiN coatings as a function of grain size are reported. TiN thin films (thickness of 100 nm) with various grain sizes (8-100 nm) were prepared on Si substrates by a pulsed laser deposition technique. All the samples were irradiated with He ions to high fluences at room temperature. Transmission electron microscopy (TEM) and high resolution TEM on the ion-irradiated samples show that damage accumulation in the TiN films reduces as the grain size reduces. Electrical resistivity of the ion-irradiated films increases slightly compared with the as-deposited ones. These observations demonstrate a good radiation-tolerance property of nanocrystalline TiN films. © 2007 Elsevier B.V. All rights reserved.