1000 resultados para Previsão de Inflação


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The national truck fleet has expanded strongly in recent decades. However, due to fluctuations in the demand that the market is exposed, it needed up making more effective strategic decisions of automakers. These decisions are made after an evaluation of guaranteed sales forecasts. This work aims to generate an annual forecast of truck production by Box and Jenkins methodology. They used annual data for referring forecast modeling from the year 1957 to 2014, which were obtained by the National Association of Motor Vehicle Manufacturers (Anfavea). The model used was Autoregressive Integrated Moving Average (ARIMA) and can choose the best model for the series under study, and the ARIMA (2,1,3) as representative for conducting truck production forecast

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the high competitiveness in the industrial chemical sector, demand forecast is a relevant factor for decision-making. There is a need for tools capable of assisting in the analysis and definition of the forecast. In that sense, the objective is to generate the chemical industry forecast using an advanced forecasting model and thus verify the accuracy of the method. Because it is time series with seasonality, the model of seasonal autoregressive integrated moving average - SARIMA generated reliable forecasts and acceding to the problem analyzed, thus enabling, through validation with real data improvements in the management and decision making of supply chain

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Geotechnical engineering the foundation projects depend on the bearing capacity and the acceptable displacements. One of the possible ways to predict the bearing capacity of foundations is through semi-empirical statistical methods which correlate in-situ tests (SPT and CPT). The piles breaking loads are defined by the interpretation of the load x head displacement curve and the experimental data acquired through the load test. In this work it is studied the behavior of bored piles executed in the Araquari/SC region, comparing the bearing capacity values predicted by the methods DECOURT & QUARESMA MODIFICADO (1996), AOKI & VELLOSO MODIFICADO MONTEIRO (2000), MILITITISKY E ALVES (1985), DECOURT & QUARESMA (1978), MÉTODO DE AOKI & VELLOSO (1975) e PHILOPANNAT (1986), with the results of the load test, evaluating their differences and discussing parameters that have direct effects on the prediction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1988 constitution makes an life is a supreme good when increased health as the fundamental condition requiring that all ill patient has the right to be treated in a public hospital (CF, art. 196). In this sense, the goal of this work is to generate a weekly forecast of hospital care by means of an advanced prediction model. It is expected that the model of self-regressivas seasonal moving averages SARIMA generate reliable and adherent to issue forecasts analyzed, thus enabling better resource allocation and more efficient hospital management

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to model a equation for the demand of automobiles and light commercial vehicles, based on the data from February 2007 to July 2014, through a multiple regression analysis. The literature review consists of an information collection of the history of automotive industry, and it has contributed to the understanding of the current crisis that affects this market, which consequence was a large reduction in sales. The model developed was evaluated by a residual analysis and also was used an adhesion test - F test - with a significance level of 5%. In addition, a coefficient of determination (R2) of 0.8159 was determined, indicating that 81.59% of the demand for automobiles and light commercial vehicles can be explained by the regression variables: interest rate, unemployment rate, broad consumer price index (CPI), gross domestic product (GDP) and tax on industrialized products (IPI). Finally, other ten samples, from August 2014 to May 2015, were tested in the model in order to validate its forecasting quality. Finally, a Monte Carlo Simulation was run in order to obtain a distribution of probabilities of future demands. It was observed that the actual demand in the period after the sample was in the range that was most likely to occur, and that the GDP and the CPI are the variable that have the greatest influence on the developed model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The national truck fleet has expanded strongly in recent decades. However, due to fluctuations in the demand that the market is exposed, it needed up making more effective strategic decisions of automakers. These decisions are made after an evaluation of guaranteed sales forecasts. This work aims to generate an annual forecast of truck production by Box and Jenkins methodology. They used annual data for referring forecast modeling from the year 1957 to 2014, which were obtained by the National Association of Motor Vehicle Manufacturers (Anfavea). The model used was Autoregressive Integrated Moving Average (ARIMA) and can choose the best model for the series under study, and the ARIMA (2,1,3) as representative for conducting truck production forecast

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the high competitiveness in the industrial chemical sector, demand forecast is a relevant factor for decision-making. There is a need for tools capable of assisting in the analysis and definition of the forecast. In that sense, the objective is to generate the chemical industry forecast using an advanced forecasting model and thus verify the accuracy of the method. Because it is time series with seasonality, the model of seasonal autoregressive integrated moving average - SARIMA generated reliable forecasts and acceding to the problem analyzed, thus enabling, through validation with real data improvements in the management and decision making of supply chain

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Geotechnical engineering the foundation projects depend on the bearing capacity and the acceptable displacements. One of the possible ways to predict the bearing capacity of foundations is through semi-empirical statistical methods which correlate in-situ tests (SPT and CPT). The piles breaking loads are defined by the interpretation of the load x head displacement curve and the experimental data acquired through the load test. In this work it is studied the behavior of bored piles executed in the Araquari/SC region, comparing the bearing capacity values predicted by the methods DECOURT & QUARESMA MODIFICADO (1996), AOKI & VELLOSO MODIFICADO MONTEIRO (2000), MILITITISKY E ALVES (1985), DECOURT & QUARESMA (1978), MÉTODO DE AOKI & VELLOSO (1975) e PHILOPANNAT (1986), with the results of the load test, evaluating their differences and discussing parameters that have direct effects on the prediction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discute-se o potencial prognóstico de índices de instabilidade para eventos convectivos de verão na Região Metropolitana de São Paulo. Cinco dos oito dias do período analisado foram considerados chuvosos, com observação de tempestades a partir do meio da tarde. O Índice K (IK) obteve valores abaixo de 31 nos 5 eventos, afetado pela presença de uma camada fria e seca em níveis médios da atmosfera em relação aos baixos níveis. O Índice Total Totals (ITT) falhou na detecção de severidade em 3 dos 5 eventos, apresentando valores inferiores ao mínimo limiar tabelado para fenômenos convectivos (ITT < 44) nesses dias. O Índice Levantado (IL) variou entre -4.9 e -4.3 em todos os 5 casos, valores associados a instabilidade moderada. O Índice de Showalter (IS) indicou possibilidade de tempestades severas em 4 dos 5 casos. Tanto o IS como o CAPE Tv tiveram seus valores fortemente reduzidos em uma sondagem com camada isotérmica entre 910 e 840 hPa. As séries temporais de CAPE Tv e IL mostraram significativa concordância de fase, com alta correlação linear entre ambas. CINE Tv ≈ 0 J kg-1 em associação com baixo cisalhamento vertical e com IS, IL e CAPE Tv, pelo menos moderados, parecem ser fatores comuns em dias de verão com chuvas abundantes e pequena influência da dinâmica de grande escala na área de estudo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho aborda o problema de previsão para séries de vazões médias mensais, no qual denomina-se de horizonte de previsão (h), o intervalo de tempo que separa a última observação usada no ajuste do modelo de previsão e o valor futuro a ser previsto. A análise do erro de previsão é feita em função deste horizonte de previsão. Estas séries possuem um comportamento periódico na média, na variância e na função de autocorrelação. Portanto, considera-se a abordagem amplamente usada para a modelagem destas séries que consiste inicialmente em remover a periodicidade na média e na variância das séries de vazões e em seguida calcular uma série padronizada para a qual são ajustados modelos estocásticos. Neste estudo considera-se para a série padronizada os modelos autorregressivos periódicos PAR (p m). As ordens p m dos modelos ajustados para cada mês são determinadas usando os seguintes critérios: a análise clássica da função de autocorrelação parcial periódica (FACPPe); usando-se o Bayesian Information Criterion (BIC) proposto em (MecLeod, 1994); e com a análise da FACPPe proposta em (Stedinger, 2001). Os erros de previsão são calculados, na escala original da série de vazão, em função dos parâmetros dos modelos ajustados e avaliados para horizontes de previsão h variando de 1 a 12 meses. Estes erros são comparados com as estimativas das variâncias das vazões para o mês que está sendo previsto. Como resultado tem-se uma avaliação da capacidade de previsão, em meses, dos modelos ajustados para cada mês.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O regime monetário de metas de inflação é um padrão de conduta da política monetária que passou a ser utilizado por vários países a partir da década de 1990, dentre eles o Brasil, que adotou este modelo em 1999, após uma crise cambial. Com seu arcabouço teórico pautado nas premissas da teoria novo-clássica e tendo como principal característica o anúncio prévio de uma meta numérica para a inflação, este regime passou a ser adotado por países que buscavam alcançar a estabilidade de seus preços. O presente trabalho irá brevemente expor a base teórica e as características do referido regime. Porém, o foco principal será a discussão da utilização do IPCA (Índice de Preços ao Consumidor Amplo) pelo regime de metas como balizador da inflação no Brasil.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: