996 resultados para Power converters
Resumo:
Recent changes in the operation and planning of power systems have been motivated by the introduction of Distributed Generation (DG) and Demand Response (DR) in the competitive electricity markets' environment, with deep concerns at the efficiency level. In this context, grid operators, market operators, utilities and consumers must adopt strategies and methods to take full advantage of demand response and distributed generation. This requires that all the involved players consider all the market opportunities, as the case of energy and reserve components of electricity markets. The present paper proposes a methodology which considers the joint dispatch of demand response and distributed generation in the context of a distribution network operated by a virtual power player. The resources' participation can be performed in both energy and reserve contexts. This methodology contemplates the probability of actually using the reserve and the distribution network constraints. Its application is illustrated in this paper using a 32-bus distribution network with 66 DG units and 218 consumers classified into 6 types of consumers.
Resumo:
Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Física - Física Aplicada pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Power law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with fractal structures and self-similar systems. In this paper, we analyze real data that follows a PL and a double PL behavior and verify the relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs coefficients into capacity dimension of fractals of any real data.
Resumo:
Coal contains trace elements and naturally occurring radionuclides such as 40K, 232Th, 238U. When coal is burned, minerals, including most of the radionuclides, do not burn and concentrate in the ash several times in comparison with their content in coal. Usually, a small fraction of the fly ash produced (2-5%) is released into the atmosphere. The activities released depend on many factors (concentration in coal, ash content and inorganic matter of the coal, combustion temperature, ratio between bottom and fly ash, filtering system). Therefore, marked differences should be expected between the by-products produced and the amount of activity discharged (per unit of energy produced) from different coal-fired power plants. In fact, the effects of these releases on the environment due to ground deposition have been received some attention but the results from these studies are not unanimous and cannot be understood as a generic conclusion for all coal-fired power plants. In this study, the dispersion modelling of natural radionuclides was carried out to assess the impact of continuous atmospheric releases from a selected coal plant. The natural radioactivity of the coal and the fly ash were measured and the dispersion was modelled by a Gaussian plume estimating the activity concentration at different heights up to a distance of 20 km in several wind directions. External and internal doses (inhalation and ingestion) and the resulting risk were calculated for the population living within 20 km from the coal plant. In average, the effective dose is lower than the ICRP’s limit and the risk is lower than the U.S. EPA’s limit. Therefore, in this situation, the considered exposure does not pose any risk. However, when considering the dispersion in the prevailing wind direction, these values are significant due to an increase of 232Th and 226Ra concentrations in 75% and 44%, respectively.
Resumo:
Gamma radiations measurements were carried out in the vicinity of a coal-fired power plant located in the southwest coastline of Portugal. Two different gamma detectors were used to assess the environmental radiation within a circular area of 20 km centred in the coal plant: a scintillometer (SPP2 NF, Saphymo) and a high purity germanium detector (HPGe, Canberra). Fifty urban and suburban measurements locations were established within the defined area and two measurements campaigns were carried out. The results of the total gamma radiation ranged from 20.83 to 98.33 counts per second (c.p.s.) for both measurement campaigns and outdoor doses rates ranged from 77.65 to 366.51 Gy/h. Natural emitting nuclides from the U-238 and Th-232 decay series were identified as well as the natural emitting nuclide K-40. The radionuclide concentration from the uranium and thorium series determined by gamma spectrometry ranged from 0.93 to 73.68 Bq/kg, while for K-40 the concentration ranged from 84.14 to 904.38 Bq/kg. The obtained results were used primarily to define the variability in measured environmental radiation and to determine the coal plant’s influence in the measured radiation levels. The highest values were measured at two locations near the power plant and at locations between the distance of 6 and 20 km away from the stacks, mainly in the prevailing wind direction. The results showed an increase or at least an influence from the coal-fired plant operations, both qualitatively and quantitatively.
Resumo:
The aim of this work was to simulate the radionuclides dispersion in the surrounding area of a coal-fired power plant, operational during the last 25 years. The dispersion of natural radionuclides (236Ra, 232Th and 40K) was simulated by a Gaussian plume dispersion model with three different stability classes estimating the radionuclides concentration at ground level. Measurements of the environmen-tal activity concentrations were carried out by γ-spectrometry and compared with results from the air dispersion and deposition model which showed that the stabil-ity class D causes the dispersion to longer distances up to 20 km from the stacks.
Resumo:
Hand-off (or hand-over), the process where mobile nodes select the best access point available to transfer data, has been well studied in wireless networks. The performance of a hand-off process depends on the specific characteristics of the wireless links. In the case of low-power wireless networks, hand-off decisions must be carefully taken by considering the unique properties of inexpensive low-power radios. This paper addresses the design, implementation and evaluation of smart-HOP, a hand-off mechanism tailored for low-power wireless networks. This work has three main contributions. First, it formulates the hard hand-off process for low-power networks (such as typical wireless sensor networks - WSNs) with a probabilistic model, to investigate the impact of the most relevant channel parameters through an analytical approach. Second, it confirms the probabilistic model through simulation and further elaborates on the impact of several hand-off parameters. Third, it fine-tunes the most relevant hand-off parameters via an extended set of experiments, in a realistic experimental scenario. The evaluation shows that smart-HOP performs well in the transitional region while achieving more than 98 percent relative delivery ratio and hand-off delays in the order of a few tens of a milliseconds.
Resumo:
The use of a solar photovoltaic (PV) panel simulator can be a valued tool for the design and evaluation of the several components of a photovoltaic system. This simulator is based on power electronic converter controlled in such a way that will behave as a PV panel. Thus, in this paper a PV panel simulator based on a two quadrant DC/DC power converter is proposed. This topology will allow to achieve fast responses, like suddenly changes in the irradiation and temperature. To control the power converter it will be used a fast and robust sliding mode controller. Therefore, with the proposed system I-V curve simulation of a PV panel is obtained. Experimental results from a laboratory prototype are presented in order to confirm the theoretical operation.
Resumo:
The Fast Field-Cycling Nuclear Magnetic Resonance (FFC-NMR) is a technique used to study the molecular dynamics of different types of materials. The main elements of this equipment are a magnet and its power supply. The magnet used as reference in this work is basically a ferromagnetic core with two sets of coils and an air-gap where the materials' sample is placed. The power supply should supply the magnet being the magnet current controlled in order to perform cycles. One of the technical issues of this type of solution is the compensation of the non-linearities associated to the magnetic characteristic of the magnet and to parasitic magnetic fields. To overcome this problem, this paper describes and discusses a solution for the FFC-NMR power supply based on a four quadrant DC/DC converter.
Resumo:
This paper is about a PV system connected to the electric grid by power electronic converters, using classical PI controller. The modelling for the converters emulates the association of a DC-DC boost with a two-level power inverter (TwLI) or three-level power inverter (ThLI) in order to follow the performance of a testing experimental system. Pulse width modulation (PWMo) by sliding mode control (SMCo) associated with space vector modulation (SVMo) is applied to the boost and the inverter. The PV system is described by the five parameters equivalent circuit. Parameter identification and simulation studies are performed for comparison with the testing experimental system.
Resumo:
This paper focuses on a PV system linked to the electric grid by power electronic converters, identification of the five parameters modeling for photovoltaic systems and the assessment of the shading effect. Normally, the technical information for photovoltaic panels is too restricted to identify the five parameters. An undemanding heuristic method is used to find the five parameters for photovoltaic systems, requiring only the open circuit, maximum power, and short circuit data. The I- V and the P- V curves for a monocrystalline, polycrystalline and amorphous photovoltaic systems are computed from the parameters identification and validated by comparison with experimental ones. Also, the I- V and the P- V curves under the effect of partial shading are obtained from those parameters. The modeling for the converters emulates the association of a DC-DC boost with a two-level power inverter in order to follow the performance of a testing commercial inverter employed on an experimental system. © 2015 Elsevier Ltd.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Um dos princípios da Gestão é: “If you cannot measure it, you cannot improve it.” In The Economist – 26.Dez.2008, idea of 19th century English physicist Lord Kelvin. Embora seja uma afirmação aplicável à gestão económica, também pode ser utilizada no domínio da gestão da energia. Este trabalho surge da necessidade sentida pela empresa Continental - Industria Têxtil do Ave, S.A. em efetuar uma atualização dos seus standards de produção, minimizando os seus consumos de eletricidade e gás natural. Foi necessário efetuar o levantamento dos consumos em diversas máquinas e equipamentos industriais, caracterizando e analisando os consumos ao longo de todo o processo produtivo. Para o tratamento de dados recolhidos foi desenvolvida uma folha de cálculo em MS Office ExcelTM com metodologia adequada ao equipamento em análise, que dará apoio ao decisor para a identificação dos aspetos que melhorem o processo produtivo e garantam uma elevada eficiência energética. Porém, não se enquadra no âmbito do Plano Nacional de Racionalização de Energia, sendo uma “auditoria energética” ao processo produtivo. Recentemente, a empresa, tem vindo a utilizar equipamentos eletrónicos que permitem otimizar o funcionamento mecânico dos equipamentos e das potências instaladas dos transformadores, na tentativa de racionalizar o consumo da energia elétrica. Outros equipamentos como, conversores de frequência para controlo de motores, balastros eletrónicos que substituem os convencionais balastros ferromagnéticos das lâmpadas de descarga fluorescente, têm sido incluídos ao nível das instalações elétricas, sendo gradualmente substituída a eletromecânica pela eletrónica. Este tipo de soluções vem deteriorar as formas de onda da corrente e da tensão do sistema pela introdução de distorções harmónicas. Faz ainda parte deste trabalho, um estudo de uma solução que melhore, simultaneamente o fator de potência e reduza as harmónicas presentes num posto de transformação localizado no seio da fábrica. Esta solução, permite melhorar a qualidade da energia elétrica e as condições de continuidade de serviço, garantindo melhores condições de exploração e incrementando a produtividade da empresa.
Resumo:
When China launched an anti-satellite (ASAT) weapon in January 2007 to destroy one of its inactive weather satellites, most reactions from academics and U.S. space experts focused on a potential military “space race” between the United States and China. Overlooked, however, is China’s growing role as global competitor on the non-military side of space. China’s space program goes far beyond military counterspace applications and manifests manned space aspirations, including lunar exploration. Its pursuit of both commercial and scientific international space ventures constitutes a small, yet growing, percentage of the global space launch and related satellite service industry. It also highlights China’s willingness to cooperate with nations far away from Asia for political and strategic purposes. These partnerships may constitute a challenge to the United States and enhance China’s “soft power” among key American allies and even in some regions traditionally dominated by U.S. influence (e.g., Latin America and Africa). Thus, an appropriate U.S. response may not lie in a “hard power” counterspace effort but instead in a revival of U.S. space outreach of the past, as well as implementation of more business-friendly export control policies.