957 resultados para Potassium Chlorate
Resumo:
In the semiarid region of Brazil the use of irrigation systems for applying fertilizers in horticulture is the primary means for incorporating nutrients in the soil. However, this technique still requires its use in wine vines to be assessed. In view of this, this study aimed to assess nitrate and potassium concentrations in soil fertigated with nitrogen and potassium fertilizers in 3 wine grape growing cycles. A field experiment was conducted with ?Syrah? wine grapes, in Petrolina, Pernambuco, Brazil; it assessed five nitrogen doses (0, 15, 30, 60 and 120 kg ha-1) and five K2O doses (0, 15, 30, 60 and 120 kg ha-1) applied by drip irrigation system with two emitters per plant, with a flow rate of 4 L h-1. The experimental design used was the factorial split-plot, making up 13 combinations arranged in 4 randomized blocks. Soil solution samples were collected weekly with the aid of porous cup extractors for all treatments and at depths of 0.4 and 0.6 m by determining nitrate and potassium concentrations and electrical conductivity. Increased levels of both nutrients in the irrigation water increased the availability of nitrate and potassium in the soil solution. The highest nitrate and potassium concentrations were found in the second growing cycle at both depths studied.
Resumo:
2016
Resumo:
Introduction: Brazil, is one of the main agricultural producers in the world ranking 1st in the production of sugarcane, coffee and oranges. It is also 2nd as world producer of soybeans and a leader in the harvested yields of many other crops. The annual consumption of mineral fertilizers exceeds 20 million mt, 30% of which corresponds to potash fertilizers (ANDA, 2006). From this statistic it may be supposed that fertilizer application in Brazil is rather high, compared with many other countries. However, even if it is assumed that only one fourth of this enormous 8.5 million km2 territory is used for agriculture, average levels of fertilizer application per hectare of arable land are not high enough for sustainable production. One of the major constraints is the relatively low natural fertility status of the soils which contain excessive Fe and Al oxides. Agriculture is also often practised on sandy soils so that the heavy rainfall causes large losses of nutrients through leaching. In general, nutrient removal by crops such as sugarcane and tropical fruits is much more than the average nutrient application via fertilization, especially in regions with a long history of agricultural production. In the recently developed areas, especially in the Cerrado (Brazilian savanna) where agriculture has expanded since 1980, soils are even poorer than in the "old" agricultural regions, and high costs of mineral fertilizers have become a significant input factor in determining soybean, maize and cotton planting. The consumption of mineral fertilizers throughout Brazil is very uneven. According to the 1995/96 Agricultural Census, only in eight of the total of 26 Brazilian states, were 50 per cent or more of the farms treated "systematically" with mineral fertilizers; in many states it was less than 25 per cent, and in five states even less than 12 per cent (Brazilian Institute for Geography and Statistics; Censo Agropecuario1995/96, Instituto Brazileiro de Geografia e Estadistica; IBGE, www.ibge.gov.br). The geographical application distribution pattern of mineral fertilizers may be considered as an important field of research. Understanding geographical disparities in fertilization level requires a complex approach. This includes evaluation of the availability of nutrients in the soil (and related soil properties e.g. CEC and texture), the input of nutrients with fertilizer application, and the removal of nutrients by harvested yields. When all these data are compiled, it is possible to evaluate the balance of particular nutrients for certain areas, and make conclusions as to where agricultural practices should be optimized. This kind of research is somewhat complicated, because it relies on completely different sources of data, usually from incomparable data sources, e.g. soil characteristics attributed to soil type areas, in contrast to yields by administrative regions, or farms. A priority tool in this case is the Geographical Information System (GIS), which enables attribution of data from different fields to the same territorial units, and makes possible integration of these data in an "inputoutput" model, where "input" is the natural availability of a nutrient in the soil plus fertilization, and "output" export of the same nutrient with the removed harvested yield.
Resumo:
Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.
Resumo:
To characterize the relaxation induced by BAY 41-2272 in human ureteral segments. Ureter specimens (n = 17) from multiple organ human deceased donors (mean age 40 ± 3.2 years, male/female ratio 2:1) were used to characterize the relaxing response of BAY 41-2272. Immunohistochemical analysis for endothelial and neuronal nitric oxide synthase, guanylate cyclase stimulator (sGC) and type 5 phosphodiesterase was also performed. The potency values were determined as the negative log of the molar to produce 50% of the maximal relaxation in potassium chloride-precontracted specimens. The unpaired Student t test was used for the comparisons. Immunohistochemistry revealed the presence of endothelial nitric oxide synthase in vessel endothelia and neuronal nitric oxide synthase in urothelium and nerve structures. sGC was expressed in the smooth muscle and urothelium layer, and type 5 phosphodiesterase was present in the smooth muscle only. BAY 41-2272 (0.001-100 μM) relaxed the isolated ureter in a concentration dependent manner, with a potency and maximal relaxation value of 5.82 ± 0.14 and 84% ± 5%, respectively. The addition of nitric oxide synthase and sGC inhibitors reduced the maximal relaxation values by 21% and 45%, respectively. However, the presence of sildenafil (100 nM) significantly potentiated (6.47 ± 0.10, P <.05) this response. Neither glibenclamide or tetraethylammonium nor ureteral urothelium removal influenced the relaxation response by BAY 41-2272. BAY 41-2272 relaxes the human isolated ureter in a concentration-dependent manner, mainly by activating the sGC enzyme in smooth muscle cells rather than in the urothelium, although a cyclic guanosine monophosphate-independent mechanism might have a role. The potassium channels do not seem to be involved.
Resumo:
Agonists such as icilin and menthol can activate the cool temperature-sensitive ion channel TRPM8. However, biological responses to menthol may occur independently of TRPM8 activation. In the rodent urinary bladder, menthol facilitates the micturition reflex but inhibits muscarinic contractions of the detrusor smooth muscle. The site(s) of TRPM8 expression in the bladder are controversial. In this study we investigated the regulation of bladder contractility in vitro by menthol. Bladder strips from wild type and TRPM8 knockout male mice (25-30 g) were dissected free and mounted in organ baths. Isometric contractions to carbachol (1 nM-30 µM), CaCl2 (1 µM to 100 mM) and electrical field stimulation (EFS; 8, 16, 32 Hz) were measured. Strips from both groups contracted similarly in response to both carbachol and EFS. Menthol (300 µM) or nifedipine (1 µM) inhibited carbachol and EFS-induced contractions in both wild type and TRPM8 knockout bladder strips. Incubation with the sodium channel blocker tetrodotoxin (1 µM), replacement of extracellular sodium with the impermeant cation N-Methyl-D-Glucamine, incubation with a cocktail of potassium channel inhibitors (100 nM charybdotoxin, 1 µM apamin, 10 µM glibenclamide and 1 µM tetraethylammonium) or removal of the urothelium did not affect the inhibitory actions of menthol. Contraction to CaCl2 was markedly inhibited by either menthol or nifedipine. In cultured bladder smooth muscle cells, menthol or nifedipine abrogated the carbachol or KCl-induced increases in [Ca2+]i. Intravesical administration of menthol increased voiding frequency while decreasing peak voiding pressure. We conclude that menthol inhibits muscarinic bladder contractions through blockade of L-type calcium channels, independently of TRPM8 activation.
Resumo:
Parenteral nutrition (PN) formulations are commonly individualized, since their standardization seem inadequate for the pediatric population. This study aimed to evaluate the nutritional state and the reasons for PN individualization in pediatric patients using PN hospitalized in a tertiary hospital in Campinas, São Paulo. This longitudinal study comprised patients using PN followed by up to 67 days. Nutritional status was classified according to the criteria established by the World Health Organization (WHO) (2006) and WHO (2007). The levels of the following elements on blood were analyzed: sodium, potassium, ionized calcium, chloride, magnesium, inorganic phosphorus and triglycerides (TGL). Among the criteria for individualization, were considered undeniable: significant reduction in blood levels of potassium (<3 mEq/L), sodium (<125 mEq/)L, magnesium (<1 mEq/L), phosphorus (<1.5 mEq/L), ionic calcium (<1 mmol) and chloride (<90 mEq/L) or any value above the references. Twelve pediatric patients aged 1 month to 15 years were studied (49 individualizations). Most patients were classified as malnourished. It was observed that 74/254 (29.2%) of examinations demanded individualized PN by indubitable reasons. The nutritional state of patients was considered critical in most cases. Thus, the individualization performed in the beginning of PN for energy protein adequacy was indispensable. In addition, the individualized PN was indispensable in at least 29.2% of PN for correction of alterations found in biochemical parameters.
Resumo:
This article describes the use of a conventional CRT monitor as a high voltage power supply for capillary electrophoresis. With this monitor, a 23-kV high voltage with a ripple of 1.32% was observed. The reproducibility of the applied high voltage was evaluated by measuring the standard deviations of peak area and migration time for five consecutive injections of a test mixture containing potassium, sodium, and lithium cations at 50 mmol L-1. The errors were about 2.5% and 0.6% for peak area and migration time, respectively. The maximum current tested was about 180 mA, which covers most capillary electrophoresis applications. This system has been successfully used for several months, maintaining the desired level of performance.
Resumo:
A trial was carried out to evaluate the chemical composition in the aerial part of lettuce, cv. 'Elisa', irrigated with wastewater treated with constructed wetland and source deposit water, grown on a Rhodic Hapludox Soil, using the irrigation systems sprinkle, subsurface drip and surface drip irrigation. The experiment was carried out from August 17th to October 3rd of 2001 and the chemical analyses of the lettuce were accomplished to 47 days after transplanting of the seedling. The aerial part of the lettuce was analyzed as for the levels of total nitrogen, nitrate, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, zinc, sodium, boron, cobalt and molybdenum. The sodium and the sulfur presented higher levels than the maximum suitable in the aerial part of the lettuce and the smallest level of magnesium, while other chemical elements analyzed were normal and appropriate considering the standard for well-nourished plants, not being influenced by the water type. The sodium was the chemical element that presented the highest levels in the aerial part of the lettuce in the treatments irrigated with wastewater, presenting significant difference in relationship to the treatments irrigated with source deposit water in the three irrigation systems. The use of the different irrigation systems by the application of wastewater treated with constructed wetland did not interfere in the levels of nutrients in the aerial part of the lettuce.
Resumo:
Time Domain Reflectometry (TDR) is a reliable method for in-situ measurements of the humidity and the solution concentration at the same soil volume. Accurate interpretation of electrical conductivity (and soil humidity) measurements may require a specific calibration curve. The primary goal of this work was to establish a calibration procedure for using TDR to estimate potassium nitrate concentrations (KNO3) in soil solution. An equation relating the electrical conductivity measured by TDR and KNO3 concentration was established enabling the use of TDR technique to estimate soil water content and nitrate concentration for efficient fertigation management.
Resumo:
The aim of this research was to optimize osmotic dehydration of pineapple, according to two criteria: maximize water loss and minimize solid gain. The process was made as an application to Combined Methods Technology, in which three preservation factors were combined: water activity, pH and chemical preservatives, all being applied at low levels, in order to get a product resembling non-processed fruit. The experiment was divided into three treatments, being: non-coated pineapple pieces (A), pieces coated with alginate (B) and coated with low-methoxyl pectin (C). Process involved the following main steps: enzymatic inactivation of fruit pieces; in treatments B and C, incorporation of their respective coatings; and osmotic dehydration, in sucrose syrup containing potassium sorbate and citric acid. Optimum conditions, determined from Response Surface Methodology, were the following: dehydration of fruit pieces coated by alginate, at 42-47° C, in sucrose syrup at 66-69° Brix, for 220 to 270 minutes. Results indicated that both coatings significantly affected the mass transfers of the process, reducing solid incorporation and increasing water loss; therefore, increasing weight loss and performance ratio (water loss: solid incorporation) took place. Water activity was not significantly affected by the coatings. The product obtained under optimum conditions was submitted to sensorial evaluation, and presented a good general acceptance. Moulds and yeasts countings indicated good microbiological stability of the product for at least 60 days at 30ºC.
Resumo:
In 2004, Costa-Santos and cols. reported 24 patients from 19 Brazilian families with 17α-hydroxylase deficiency and showed that p.W406R and p.R362C corresponded to 50% and 32% of CYP17A1 mutant alleles, respectively. The present report describes clinical and molecular data of six patients from three inbred Brazilian families with 17α-hydroxlyse deficiency. All patients had hypogonadism, amenorrhea and hypertension at diagnosis. Two sisters were found to be 46,XY with both gonads palpable in the inguinal region. All patients presented hypergonadotrophic hypogonadism, with high levels of ACTH (> 104 ng/mL), suppressed plasmatic renin activity, low levels of potassium (< 2.8 mEq/L) and elevated progesterone levels (> 4.4 ng/mL). Three of them, including two sisters, were homozygous for p.W406R mutation and the other three (two sisters and one cousin) were homozygous for p.R362C. The finding of p.W406R and p.R362C in the CYP17A1 gene here reported in additional families, confirms them as the most frequent mutations causing complete combined 17α-hydroxylase/17,20-lyase deficiency in Brazilian patients.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
OBJECTIVE: The aim of this study was to evaluate the capacity of potassium oxalate, fluoride gel and two kinds of propolis gel to reduce the hydraulic conductance of dentin, in vitro. MATERIAL AND METHODS: The methodology used for the measurement of hydraulic conductance of dentin in the present study was based on a model proposed in literature. Thirty-six 1-mm-thick dentin discs, obtained from extracted human third molars were divided into 4 groups (n=9). The groups corresponded to the following experimental materials: GI-10% propolis gel, pH 4.1; GII-30% propolis gel; GIII-3% potassium oxalate gel, pH 4,1; and GIV-1.23% fluoride gel, pH 4.1, applied to the dentin under the following surface conditions: after 37% phosphoric acid and before 6% citric acid application. The occluding capacity of the dentin tubules was evaluated using scanning electron microscopy (SEM) at ×500, ×1,000 and ×2,000 magnifications. Data were analyzed statistically by two-way ANOVA and Tukey's test at 5% significance level. RESULTS: Groups I, II, III, IV did not differ significantly from the others in any conditions by reducing in hydraulic conductance. The active agents reduced dentin permeability; however they produced the smallest reduction in hydraulic conductance when compared to the presence of smear layer (P<0.05). The effectiveness in reducing dentin permeability did not differ significantly from 10% or 30% propolis gels. SEM micrographs revealed that dentin tubules were partially occluded after treatment with propolis. CONCLUSIONS: Under the conditions of this study, the application of 10% and 30% propolis gels did not seem to reduce the hydraulic conductance of dentin in vitro, but it showed capacity of partially obliterating the dentin tubules. Propolis is used in the treatment of different oral problems without causing significant great collateral effects, and can be a good option in the treatment of patients with dentin sensitivity.
Resumo:
Dentin hypersensitivity (DH) is a painful response to stimulus applied to the open dentinal tubules of a vital tooth. It's a common oral condition, however, without an ideal treatment available yet. This work evaluated in vitro the effect of micron-sized particles from a novel bioactive glass-ceramic (Biosilicate) in occluding open dentinal tubules. A dentin disc model was employed to observe comparatively, using scanning electron microscopy (SEM), dentinal tubule occlusion by different products and deposition of hydroxyl carbonate apatite (HCA) on dentin surface by Biosilicate, after a single application: G1 - Dentifrice with potassium nitrate and fluoride; G2 - Two-step calcium phosphate precipitation treatment; G3 - Water-free gel containing Biosilicate particles (1%); G4 - Biosilicate particles mixed with distilled water in a 1:10 ratio; all of them after 1, 12 and 24 hours of immersion in artificial saliva. Fourier transform infrared spectroscopy (FTIR) was performed to detect HCA formation on dentin discs filled with Biosilicate after 2 minutes, 30 minutes and 12 hours of immersion in artificial saliva. SEM showed a layer of HCA formed on dentin surface after 24 hours by G4. G1, G2 and G3 promoted not total occlusion of open dentinal tubules after 24 hours. FTIR showed HCA precipitation on the dentin surface induced by Biosilicate after 30 minutes. The micron-sized particles from the bioactive glass-ceramic thus were able to induce HCA deposition in open dentinal tubules in vitro. This finding suggests that Biosilicate may provide a new option for treating DH.