764 resultados para Porosity. GPR. Intelligent system. Artificial neural network
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Hepatitis C is a worldwide public health problem. The available therapies are limited by their partial effectiveness and with meaningful side-effects. Sesquiterpene lactones (SLs) are a group of natural products with a wide variety of chemical structures and biological activities associated. There are few studies about the influence of the molecular structure of SLs for the anti-hepatitis C virus activity. In the present work, SLs are investigated in a subgenomic RNA replicon assay system and were analyzed using multiple linear regression along with self-organizing maps with DRAGON descriptors in order to identify the structural requirements for their biological activity and to predict the inhibitory potency of SLs. Characteristics such as stereochemistry and electronic effects demonstrated to be important for their anti-HCV activity, and the SOM produced a clear separation betwenn active and inactive compounds. Therefore, it is possible to use this map as a filter for virtual screening to predict the anti-HCV activity of SLs.
Resumo:
A neural network model to predict ozone concentration in the Sao Paulo Metropolitan Area was developed, based on average values of meteorological variables in the morning (8:00-12:00 hr) and afternoon (13:00-17: 00 hr) periods. Outputs are the maximum and average ozone concentrations in the afternoon (12:00-17:00 hr). The correlation coefficient between computed and measured values was 0.82 and 0.88 for the maximum and average ozone concentration, respectively. The model presented good performance as a prediction tool for the maximum ozone concentration. For prediction periods from 1 to 5 days 0 to 23% failures (95% confidence) were obtained.
Resumo:
We present and describe a catalog of galaxy photometric redshifts (photo-z) for the Sloan Digital Sky Survey (SDSS) Co-add Data. We use the artificial neural network (ANN) technique to calculate the photo-z and the nearest neighbor error method to estimate photo-z errors for similar to 13 million objects classified as galaxies in the co-add with r < 24.5. The photo-z and photo-z error estimators are trained and validated on a sample of similar to 83,000 galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey, the Deep Extragalactic Evolutionary Probe Data Release 3, the VIsible imaging Multi-Object Spectrograph-Very Large Telescope Deep Survey, and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than sigma(68) = 0.031. After presenting our results and quality tests, we provide a short guide for users accessing the public data.
Resumo:
Muitas pesquisas estão sendo desenvolvidas buscando nos sistemas inteligentes soluções para diagnosticar falhas em máquinas elétricas. Estas falhas envolvem desde problemas elétricos, como curto-circuito numa das fases do estator, ate problemas mecânicos, como danos nos rolamentos. Dentre os sistemas inteligentes aplicados nesta área, destacam-se as redes neurais artificiais, os sistemas fuzzy, os algoritmos genéticos e os sistemas híbridos, como o neuro-fuzzy. Assim, o objetivo deste artigo é traçar um panorama geral sobre os trabalhos mais relevantes que se beneficiaram dos sistemas inteligentes nas diferentes etapas de análise e diagnóstico de falhas em motores elétricos, cuja principal contribuição está em disponibilizar diversos aspectos técnicos a fim de direcionar futuros trabalhos nesta área de aplicação.
Resumo:
[EN] Here we present monthly, basin-wide maps of the partial pressure of carbon dioxide (pCO2) for the North Atlantic on a latitude by longitude grid for years 2004 through 2006 inclusive. The maps have been computed using a neural network technique which reconstructs the non-linear relationships between three biogeochemical parameters and marine pCO2. A self organizing map (SOM) neural network has been trained using 389 000 triplets of the SeaWiFSMODIS chlorophyll-a concentration, the NCEP/NCAR reanalysis sea surface temperature, and the FOAM mixed layer depth. The trained SOM was labelled with 137 000 underway pCO2 measurements collected in situ during 2004, 2005 and 2006 in the North Atlantic, spanning the range of 208 to 437atm. The root mean square error (RMSE) of the neural network fit to the data is 11.6?atm, which equals to just above 3 per cent of an average pCO2 value in the in situ dataset. The seasonal pCO2 cycle as well as estimates of the interannual variability in the major biogeochemical provinces are presented and discussed. High resolution combined with basin-wide coverage makes the maps a useful tool for several applications such as the monitoring of basin-wide air-sea CO2 fluxes or improvement of seasonal and interannual marine CO2 cycles in future model predictions. The method itself is a valuable alternative to traditional statistical modelling techniques used in geosciences.
Resumo:
La distorsione della percezione della distanza tra due stimoli puntuali applicati sulla superfice della pelle di diverse regioni corporee è conosciuta come Illusione di Weber. Questa illusione è stata osservata, e verificata, in molti esperimenti in cui ai soggetti era chiesto di giudicare la distanza tra due stimoli applicati sulla superficie della pelle di differenti parti corporee. Da tali esperimenti si è dedotto che una stessa distanza tra gli stimoli è giudicata differentemente per diverse regioni corporee. Il concetto secondo cui la distanza sulla pelle è spesso percepita in maniera alterata è ampiamente condiviso, ma i meccanismi neurali che manovrano questa illusione sono, allo stesso tempo, ancora ampiamente sconosciuti. In particolare, non è ancora chiaro come sia interpretata la distanza tra due stimoli puntuali simultanei, e quali aree celebrali siano coinvolte in questa elaborazione. L’illusione di Weber può essere spiegata, in parte, considerando la differenza in termini di densità meccano-recettoriale delle differenti regioni corporee, e l’immagine distorta del nostro corpo che risiede nella Corteccia Primaria Somato-Sensoriale (homunculus). Tuttavia, questi meccanismi sembrano non sufficienti a spiegare il fenomeno osservato: infatti, secondo i risultati derivanti da 100 anni di sperimentazioni, le distorsioni effettive nel giudizio delle distanze sono molto più piccole rispetto alle distorsioni che la Corteccia Primaria suggerisce. In altre parole, l’illusione osservata negli esperimenti tattili è molto più piccola rispetto all’effetto prodotto dalla differente densità recettoriale che affligge le diverse parti del corpo, o dall’estensione corticale. Ciò, ha portato a ipotizzare che la percezione della distanza tattile richieda la presenza di un’ulteriore area celebrale, e di ulteriori meccanismi che operino allo scopo di ridimensionare – almeno parzialmente – le informazioni derivanti dalla corteccia primaria, in modo da mantenere una certa costanza nella percezione della distanza tattile lungo la superfice corporea. E’ stata così proposta la presenza di una sorta di “processo di ridimensionamento”, chiamato “Rescaling Process” che opera per ridurre questa illusione verso una percezione più verosimile. Il verificarsi di questo processo è sostenuto da molti ricercatori in ambito neuro scientifico; in particolare, dal Dr. Matthew Longo, neuro scienziato del Department of Psychological Sciences (Birkbeck University of London), le cui ricerche sulla percezione della distanza tattile e sulla rappresentazione corporea sembrano confermare questa ipotesi. Tuttavia, i meccanismi neurali, e i circuiti che stanno alla base di questo potenziale “Rescaling Process” sono ancora ampiamente sconosciuti. Lo scopo di questa tesi è stato quello di chiarire la possibile organizzazione della rete, e i meccanismi neurali che scatenano l’illusione di Weber e il “Rescaling Process”, usando un modello di rete neurale. La maggior parte del lavoro è stata svolta nel Dipartimento di Scienze Psicologiche della Birkbeck University of London, sotto la supervisione del Dott. M. Longo, il quale ha contribuito principalmente all’interpretazione dei risultati del modello, dando suggerimenti sull’elaborazione dei risultati in modo da ottenere un’informazione più chiara; inoltre egli ha fornito utili direttive per la validazione dei risultati durante l’implementazione di test statistici. Per replicare l’illusione di Weber ed il “Rescaling Proess”, la rete neurale è stata organizzata con due strati principali di neuroni corrispondenti a due differenti aree funzionali corticali: • Primo strato di neuroni (il quale dà il via ad una prima elaborazione degli stimoli esterni): questo strato può essere pensato come parte della Corteccia Primaria Somato-Sensoriale affetta da Magnificazione Corticale (homunculus). • Secondo strato di neuroni (successiva elaborazione delle informazioni provenienti dal primo strato): questo strato può rappresentare un’Area Corticale più elevata coinvolta nell’implementazione del “Rescaling Process”. Le reti neurali sono state costruite includendo connessioni sinaptiche all’interno di ogni strato (Sinapsi Laterali), e connessioni sinaptiche tra i due strati neurali (Sinapsi Feed-Forward), assumendo inoltre che l’attività di ogni neurone dipenda dal suo input attraverso una relazione sigmoidale statica, cosi come da una dinamica del primo ordine. In particolare, usando la struttura appena descritta, sono state implementate due differenti reti neurali, per due differenti regioni corporee (per esempio, Mano e Braccio), caratterizzate da differente risoluzione tattile e differente Magnificazione Corticale, in modo da replicare l’Illusione di Weber ed il “Rescaling Process”. Questi modelli possono aiutare a comprendere il meccanismo dell’illusione di Weber e dare così una possibile spiegazione al “Rescaling Process”. Inoltre, le reti neurali implementate forniscono un valido contributo per la comprensione della strategia adottata dal cervello nell’interpretazione della distanza sulla superficie della pelle. Oltre allo scopo di comprensione, tali modelli potrebbero essere impiegati altresì per formulare predizioni che potranno poi essere verificate in seguito, in vivo, su soggetti reali attraverso esperimenti di percezione tattile. E’ importante sottolineare che i modelli implementati sono da considerarsi prettamente come modelli funzionali e non intendono replicare dettagli fisiologici ed anatomici. I principali risultati ottenuti tramite questi modelli sono la riproduzione del fenomeno della “Weber’s Illusion” per due differenti regioni corporee, Mano e Braccio, come riportato nei tanti articoli riguardanti le illusioni tattili (per esempio “The perception of distance and location for dual tactile pressures” di Barry G. Green). L’illusione di Weber è stata registrata attraverso l’output delle reti neurali, e poi rappresentata graficamente, cercando di spiegare le ragioni di tali risultati.
Resumo:
Information processing and storage in the brain may be presented by the oscillations and cell assemblies. Here we address the question of how individual neurons associate together to assemble neural networks and present spontaneous electrical activity. Therefore, we dissected the neonatal brain at three different levels: acute 1-mm thick brain slice, cultured organotypic 350-µm thick brain slice and dissociated neuronal cultures. The spatio-temporal properties of neural activity were investigated by using a 60-channel Micro-electrode arrays (MEA), and the cell assemblies were studied by using a template-matching method. We find local on-propagating as well as large- scale propagating spontaneous oscillatory activity in acute slices, spontaneous network activity characterized by synchronized burst discharges in organotypic cultured slices, and autonomous bursting behaviour in dissociated neuronal cultures. Furthermore, repetitive spike patterns emerge after one week of dissociated neuronal culture and dramatically increase their numbers as well as their complexity and occurrence in the second week. Our data indicate that neurons can self-organize themselves, assembly to a neural network, present spontaneous oscillations, and emerge spatio-temporal activation patterns. The spontaneous oscillations and repetitive spike patterns may serve fundamental functions for information processing and storage in the brain.
Resumo:
DI Diesel engine are widely used both for industrial and automotive applications due to their durability and fuel economy. Nonetheless, increasing environmental concerns force that type of engine to comply with increasingly demanding emission limits, so that, it has become mandatory to develop a robust design methodology of the DI Diesel combustion system focused on reduction of soot and NOx simultaneously while maintaining a reasonable fuel economy. In recent years, genetic algorithms and CFD three-dimensional combustion simulations have been successfully applied to that kind of problem. However, combining GAs optimization with actual CFD three-dimensional combustion simulations can be too onerous since a large number of calculations is usually needed for the genetic algorithm to converge, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes. In order to make the optimization process less time-consuming, CFD simulations can be more conveniently used to generate a training set for the learning process of an artificial neural network which, once correctly trained, can be used to forecast the engine outputs as a function of the design parameters during a GA optimization performing a so-called virtual optimization. In the current work, a numerical methodology for the multi-objective virtual optimization of the combustion of an automotive DI Diesel engine, which relies on artificial neural networks and genetic algorithms, was developed.
Resumo:
The question addressed by this dissertation is how the human brain builds a coherent representation of the body, and how this representation is used to recognize its own body. Recent approaches by neuroimaging and TMS revealed hints for a distinct brain representation of human body, as compared with other stimulus categories. Neuropsychological studies demonstrated that body-parts and self body-parts recognition are separate processes sub-served by two different, even if possibly overlapping, networks within the brain. Bodily self-recognition is one aspect of our ability to distinguish between self and others and the self/other distinction is a crucial aspect of social behaviour. This is the reason why I have conducted a series of experiment on subjects with everyday difficulties in social and emotional behaviour, such as patients with autism spectrum disorders (ASD) and patients with Parkinson’s disease (PD). More specifically, I studied the implicit self body/face recognition (Chapter 6) and the influence of emotional body postures on bodily self-processing in TD children as well as in ASD children (Chapter 7). I found that the bodily self-recognition is present in TD and in ASD children and that emotional body postures modulate self and others’ body processing. Subsequently, I compared implicit and explicit bodily self-recognition in a neuro-degenerative pathology, such as in PD patients, and I found a selective deficit in implicit but not in explicit self-recognition (Chapter 8). This finding suggests that implicit and explicit bodily self-recognition are separate processes subtended by different mechanisms that can be selectively impaired. If the bodily self is crucial for self/other distinction, the space around the body (personal space) represents the space of interaction and communication with others. When, I studied this space in autism, I found that personal space regulation is impaired in ASD children (Chapter 9).
Resumo:
Coordinated patterns of electrical activity are important for the early development of sensory systems. The spatiotemporal dynamics of these early activity patterns and the role of the peripheral sensory input for their generation are essentially unknown. There are two projects in this thesis. In project1, we performed extracellular multielectrode recordings in the somatosensory cortex of postnatal day 0 to 7 rats in vivo and observed three distinct patterns of synchronized oscillatory activity. (1) Spontaneous and periphery-driven spindle bursts of 1–2 s in duration and ~10 Hz in frequency occurred approximately every 10 s. (2) Spontaneous and sensory-driven gamma oscillations of 150–300 ms duration and 30–40 Hz in frequency occurred every 10–30 s. (3) Long oscillations appeared only every ~20 min and revealed the largest amplitude (250–750 µV) and longest duration (>40 s). These three distinct patterns of early oscillatory activity differently synchronized the neonatal cortical network. Whereas spindle bursts and gamma oscillations did not propagate and synchronized a local neuronal network of 200–400 µm in diameter, long oscillations propagated with 25–30 µm/s and synchronized 600-800 µm large ensembles. All three activity patterns were triggered by sensory activation. Single electrical stimulation of the whisker pad or tactile whisker activation elicited neocortical spindle bursts and gamma activity. Long oscillations could be only evoked by repetitive sensory stimulation. The neonatal oscillatory patterns in vivo depended on NMDAreceptor-mediated synaptic transmission and gap junctional coupling. Whereas spindle bursts and gamma oscillations may represent an early functional columnar-like pattern, long oscillations may serve as a propagating activation signal consolidating these immature neuronal networks. In project2, Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex and somatosensory thalamus of newborn rats in vivo, we found that spontaneous and whisker stimulation induced activity patterns were restricted to functional cortical columns already at the day of birth. Spontaneous and stimulus evoked cortical activity consisted of gamma oscillations followed by spindle bursts. Spontaneous events were mainly generated in the thalamus or by spontaneous whisker movements. Our findings indicate that during early developmental stages cortical networks self-organize in ontogenetic columns via spontaneous gamma oscillations triggered by the thalamus or sensory periphery.
Resumo:
In this thesis, the main Executive Control theories are exposed. Methods typical of Cognitive and Computational Neuroscience are introduced and the role of behavioural tasks involving conflict resolution in the response elaboration, after the presentation of a stimulus to the subject, are highlighted. In particular, the Eriksen Flanker Task and its variants are discussed. Behavioural data, from scientific literature, are illustrated in terms of response times and error rates. During experimental behavioural tasks, EEG is registered simultaneously. Thanks to this, event related potential, related with the current task, can be studied. Different theories regarding relevant event related potential in this field - such as N2, fERN (feedback Error Related Negativity) and ERN (Error Related Negativity) – are introduced. The aim of this thesis is to understand and simulate processes regarding Executive Control, including performance improvement, error detection mechanisms, post error adjustments and the role of selective attention, with the help of an original neural network model. The network described here has been built with the purpose to simulate behavioural results of a four choice Eriksen Flanker Task. Model results show that the neural network can simulate response times, error rates and event related potentials quite well. Finally, results are compared with behavioural data and discussed in light of the mentioned Executive Control theories. Future perspective for this new model are outlined.