995 resultados para Pore forming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrosol of SnO2 nanoparticles are prepared by the method of colloid chemistry. The free piling up process of nanosized SnO2 colloid particles are investigated at the gas-liquid interface by LB and Brewster Angle Microscopy techniques. The result indicates that solid state monolayer and multilayer of SnO2 nanoparticles can be formed at the gas-liquid interface only by aging the sol in air or compressing it without amphiphiles surfactant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of morphology and properties on film-forming conditions is described for the symmetrically substituted copper tetra-4-(2, 4-di-t-amylphenoxy) phthalocyanine (tapCuPc) Langmuir-Blodgett (LB) films. The effects of LB film-forming conditions (such as the surface pressure, pH value and the concentrations of spreading solutions) on film quality were studied with the help of a UV-visible spectrophotometer and a transmission electron microscope. Transmission electron microscopy photographs of the surface morphology of tapCuPc LB films show that a smooth and homogeneous surface structure can be obtained under optimum film-forming conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interpretation of high-resolution two-dimensional (2D) and three-dimensional (3D) seismic data collected in the Qiongdongnan Basin, South China Sea reveals the presence of polygonal faults, pockmarks, gas chimneys and slope failure in strata of Pliocene and younger age. The gas chimneys are characterized by low-amplitude reflections, acoustic turbidity and low P-wave velocity indicating fluid expulsion pathways. Coherence time slices show that the polygonal faults are restricted to sediments with moderate-amplitude, continuous reflections. Gas hydrates are identified in seismic data by the presence of bottom simulating reflectors (BSRs), which have high amplitude, reverse polarity and are subparallel to seafloor. Mud diapirism and mounded structures have variable geometry and a great diversity regarding the origin of the fluid and the parent beds. The gas chimneys, mud diapirism, polygonal faults and a seismic facies-change facilitate the upward migration of thermogenic fluids from underlying sediments. Fluids can be temporarily trapped below the gas hydrate stability zone, but fluid advection may cause gas hydrate dissociation and affect the thickness of gas hydrate zone. The fluid accumulation leads to the generation of excess pore fluids that release along faults, forming pockmarks and mud volcanoes on the seafloor. These features are indicators of fluid flow in a tectonically-quiescent sequence, Qiongdongnan Basin. Geofluids (2010) 10, 351-368.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations of cellular total lipid, total carbohydrate and total protein content of two dominant bloom-forming species (Skeletonema costatum and Prorocentrum donghaiense) isolated from the Yangtze River Estuary were examined under six different nutrient conditions in batch cultures. Daily samples were collected to estimate the cell growth, nutrient concentration and three biochemical compositions content during 7 days for S. costatum and the same sampling procedure was done every other day during 10 days for P. donghaiense. Results showed that for S. costatum, cellular total lipid content increased under phosphorus (P) limitation, but not for nitrogen (N) limitation; cellular carbohydrate were accumulated under both N and P limitation: cellular total protein content of low nutrient concentration treatments were significantly lower than that of high nutrient concentration treatments. For P. donghaiense, both cellular total lipid content and total carbohydrate content were greatly elevated as a result of N and P exhaustion, but cellular total protein content had no significant changes under nutrient limitation. In addition, the capability of accumulation of three biochemical constituents of P. donghaiense was much stronger than that of S. costatum. Pearson correlation showed that for both species, the biochemical composition of three constituents (lipid, carbohydrate and protein) had no significant relationship with extracellular N concentration, but had positive correlation with extracellular and intracellular P concentration. The capability of two species to accumulate cellular total lipid and carbohydrate under nutrient limitation may help them accommodate the fluctuating nutrient condition of the Yangtze River Estuary. The different responses of two species of cellular biochemical compositions content under different nutrient conditions may provide some evidence to explain the temporal characteristic of blooms Caused by two species in the Yangtze River Estuary. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of fresh thalli and culture medium filtrates from two species of marine macroalgae, Ulva pertusa Kjellm (Chlorophyta) and Gracilaria lemaneiformis (Bory) Dawson (Rhodophyta), on growth of marine microalgae were investigated in co-culture under controlled laboratory conditions. A selection of microalgal species were used, all, being identified as bloom-forming dinoflagellates: Prorocentrum donghaiense Lu sp., Alexandrium tamarense (Lebour) Balech, Amphidinium carterae Hulburt and Scrippsiella trochoide (Stein) Loeblich III. Results showed that the fresh thalli of either U. pertusa or G. lemaneiformis significantly inhibited the microalgal growth, or caused mortality at the end of the experiment. However, the overall effects of the macroalgal culture filtrates on the growth of the dinoflagellates were species-specific (inhibitory, stimulatory or none) for different microalgal species. Results indicated an allelopathic effect of macroalga on the co-cultured dinoflagellate. We then took P. donghaiense as an example to further assess this hypothesis. The present study was carried out under controlled conditions, thereby excluded the fluctuation in light and temperature. Nutrient assays showed that nitrate and phosphate were almost exhausted in G. lemaneiformis co-culture. but remained at enough high levels in U pertusa co-culture, which were well above the nutrient limitation for the microalgal growth, when all cells of P. donghaiense were killed in the co-culture. Daily f/2 medium enrichment greatly alleviated the growth inhibition on P. donghaiense in G. lemaneiformis co-culture, but could not eliminate it. Other environmental factors, such as carbonate limitation, bacterial presence and the change of pH were also not necessary for the results. We thus concluded that allelopathy was the most possible reason leading to the negative effect of U. pertusa on P. donghaiense, and the combined roles of allelopathy and nutrient competition were essential for the effect of G. lemaneiformis on P. donghaiense. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between Prorocentrum donghaiense and Alexandrium tamarens, two bloom-forming dinoflagellates, were investigated using bi-algal cultures. All R donghaiense died, but A. tamarense was hardly affected by the end of the experiment when the initial cell density was set at 1.0 X 10(4) cells mL(-1) for P. donghaiense and 0.28 x 10(4) cells mL(-1) for A. tamarense. However, significant growth suppression occurred in either species when the initial cell density of P donghaiense increased to I. 0 X 105 Cells mL(-1) in the bi-algal culture, but no out-competement was observed. The simultaneous assay on the culture filtrates showed that P donghaiense filtrate prepared at a lower initial density (1.0 X 10(4) cells mL(-1)) stimulated growth of the co-cultured A. tanzarense (0.28 x 10(4) cells mL(-1)), but filtrate at a higher initial density (1.0 x 10(5) cells mL(-1)) depressed its growth. The filtrate of A. tamarense at a density of 0.28 x 10(4) cells mL(-1) killed all R donghaiense at a lower density (1.0 x 10(4) cells mL(-1)), but only exhibited an inhibitory effect on it at a higher density (1.0 x 10(5) cells mL(-1)). It is likely that these two species of microalgae interfere with each other mainly by releasing allelochemical substance(s) into the culture medium, and a direct cell-to-cell contact was not necessary for their mutual interaction. The allelopathic test further proved that A. tamarense could affect the growth of co-cultured P. donghaiense by producing allelochemical(s); moreover, A. tamarense culture filtrate at the stationary growth phase (SP) had a strongly inhibitory effect on P donghaiense compared to that at the exponential phase (EP). Results also demonstrated a dose-dependent relationship between the microalgal initial cell density and the degree of the allelopathic effect. The growth of R donghaiense and A. tamarense in the bi-algal cultures was simulated using a mathematical model to quantify the interaction. The estimated parameters from the model showed that the inhibition exerted by A. tamarense on P. donghaiense was about 17 and 8 times stronger than the inhibition P. donghaiense exerted on A. tamarense, when the initial cell density was set at 1.0 X 10(4) and 1.0 X 10(5) cells mL(-1) for P donghaiense, respectively. and 0.28 x 10(4) cells mL(-1) for A. tamarense in the bi-algal cultures. A. tamarense seems to have a survival strategy that is superior to that of P. donghaiense in bi-algal cultures under controlled laboratory conditions. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exploration in recent years shows that the Yanchang Formation in the southwest of Ordos Basin is of great resource potential and good exploration and exploitation prospect. In the thesis ,sedimentary source analysis,sedimentary system,sedimentary microfacies,sandstones distribution and reservoir characteristic are studied and favorable oil area are forecasted in Chang6-Chang8 of Yanchang formation in HuanXian region, by mainly study on the data of field section observation ,core observation, well logging explaination and routine microscope slice identification,scanning Electron Microscope and reservoir analysis of lithology and physical property , Under the guidance of such advanced theories and methods as sedimentology,reservoir sedimentology,lithological oil pool and so on. The stratum of Chang6-Chang8 of Yanchang formation could be divided into pieces of member following the principles that firstly contrasting the big segments, then contrasting the small segments, being controlled by cycle and consulting the thickness etc.And the characteristic of stratum are detailed discussed , respectively. Based on the source direction of the central basin, heavy and light minerals are used to analyse source direction of Chang6 and Chang8 member, in HuanXian area. Research result shows that the source of Chang6 and Chang8 member is mixed provenance,including west-south,west and east-north. By the study of rock types、 sedimentary conformation、lithology and electromotive curve combination and palaeo-biology,lake、delta and braided delta mianly developed in study area are recognized, Subaqueous distributary channels in delta front and in braided delta front, and sand body in deep-lake turbidite, are the main reservoir.forthermore,the characteristic of depositional system and sandy body in space are discussed. Applied with routine microscope slice identification, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, Feldspar-lithic fine-sandstone and feldspar fine-sandstone are mainly sandstone of Y Chang6-Chang8 in Huanxian area, small pore and tiny pore are the main pore types, tiny throat type and micro-fine throat type are widely developed , secondary dissolution porosity, intercrystal porosity, tiny pore and micro-crack are main pore types.Intergranular porosity and dissolution porosity secondary is the main pore secondary. The dominant diagenesis types in the area are compaction, cementation, replacement and dissolution. Chlorite films cementation facies, carbonate cementation facies ,mud cementation compaction facie, compaction 、pressure solution facies are the main diagenetic facies,in which Chlorite films cementation facies is the best diagenetic facies in study area. Reservoir influence factor analysis ,rock types are the main factor forming this low-pore and low-permeability of Chang6-Chang8 member in study area,and relatively higher permeability area are cortrolled by sedimentary facies distribution, diagenesis improved reservoir physical property. According to the distributing of sedimentary micro-facies and sandy body , and the test oil, favorable region in Chang6-Chang8 are forecasted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study and Application of Damage Mechanism and Protection Method of reservoir in Nanpu Shallow Beach Sea Area is one of the key research projects of Jidong Oilfield Company of PetroChina Company Limited from 2007 to 2008. Located at Nanpu Sag in Huanghua Depression of Bohaiwan Basin, Nanpu Shallow Beach Sea Area with 1000km2 exploration area posseses three sets, shallow Minghuazhen Formation and Guantao Formation of Upper Tertiary, middle-deep Dongying Formation of Lower Tertiary, deep Ordovician, of oil bearing series, according to the achievement of the connecting 3D seismic structure interpretation and the structural geological comprehensive research. Its main reservoir types include Upper Tertiary structural reservoir, Lower Tertiary structural and lithological-structural reservoir, and Ordovician ancient buried hill reservoir. How to protect reservoir, complete well and lift high efficiently is the key to realize high and stable yield of the oil wells during drilling, completing well, testing and repairing well. It is important for reservoir protecting during drilling that directly relate to efficient exploration. Therefore, beginning with basic characteristics and sensitive analysis of reservoir, study of reservoir damage machinism and analysis of reservoir damage potential factor are emphasized when prediction analysis about three-pressure profiles is carried out. The study both of physical and chemical properties and of the strata of the technology of borehole stabilization and reservoir protecting are outstanding. As the conclusions follow: (1)Based on the laboratory experiment about basalt cores, prediction of three- pressure profiles about 30 wells on No.1 and No.2 structure is practiced. The laws of plane pressure distribution are analyzed. (2)According to the analyses about reservoir feature data and about sensitivity evaluation to damage factor in Nanpu oil field, the scheme of reservoir protecting to the sand reservoir of Guantao Formation and the first section of Dongying Formation is put forward. (3)On basis of the analyses on lithological characteristics, mineral compositions, clay minerals, electrical behavior features, physical and chemical properties of basalt of Guantao formation in No.1 and No.2 structure, instability mechanism of basalt sidewall and technical countermeasures are obtained. (4)Aiming at the characteristics of Ordovician dissolution-pore fracture type carbonate reservoir, the scheme of the reservoir protecting to Ordovician is put forward. Creative study of the film forming and sealing and low invasion reservoir protection drilling fluid are successful. In summary, through the study of reservoir heterogeneity and sensitivity, a set of technology and schemes of reservoir protecting is put forward, which is adaptive during drilling the target bed in the research area and establishes the base for efficient exploration. Significant effect has showed in its application in Nanpu oil field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ordos Basin is a large-scale craton superimposed basin locating on the west of the North China platform, which was the hotspot of interior basin exploration and development. Qiaozhen oil field located in the Ganquan region of south-central of Ordos Basin. The paper is based on the existing research data, combined with the new theory and progress of the sedimentology, sequence stratigraphy, reservoir sedimentology, petroleum geology, etc, and analyzes systematically the sedimentary and reservoir characteristics in the chang2 and chang1 oil-bearing strata group of Yanchang formation On the basis of stratigraphic classification and comparison study, the strata chang2 and chang1 were divided into five intervals. Appling the method of cartography with single factor and dominance aspect, we have drawn contour line map of sand thickness, contour line map of ratio between sand thickness and stratum thickness. We discussed distribution characteristics of reservoir sand body and evolution of sedimentary facies and microfacies. And combining the field type section , lithologic characteristics, sedimentary structures, the sedimentary facies of single oil well and particle size analysis and according to the features of different sequence, the study area was divided into one sedimentary facies、three parfacies and ten microfacies. The author chew over the characteristics of every facies, parfacies and microfacies and spatial and temporal distribution. Comprehensive research on petrologic characteristics of reservoir , diagenesis types, pore types, distribution of sand bodies, physical properties, oiliness, reservoir heterogeneities, characteristics of interlayer, eventually research on synthetic classifying evaluation of reservoir.The reservoir is classified four types: Ⅰ、Ⅱ、Ⅲ、Ⅳ and pore type, fracture-porosity type. Take reservoir's average thickness, porosity, permeability, oil saturation and shale content as parameters, by using clustering analysis and discriminant analysis, the reservoir is classified three groups. Based on the evaluation, synthetizing the reservoir quality, the sealing ability of cap rock, trap types, reservoir-forming model ,in order to analyze the disciplinarian of accumulation oil&gas. Ultimately, many favorable zones were examined for chang23,chang223,chang222,chang221,chang212,chang12,chang11 intervals. There are twenty two favorable zones in the research area. Meanwhile deploy the next disposition scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migration carriers act as the “Bridges” connecting source rock and traps and play important roles in petroleum migration and accumulation system. Among various types of carriers, sandstone carrier constitutes the basis of carrier system consisting of connected sandstone bodies, of sand-bodies connected with other carriers, such as faults and/or unconformities. How do we understand sandstone carrier beyond the traditional reservoirs concept? How could we characterize quantitatively this kind of carriers for petroleum migration? Such subjects are important and difficult contents in dynamic studies on hydrocarbon migration and accumulation. Sandstone carrier of Chang 8 member in Longdong area of Ordos Basin is selected as the research target in this thesis. Through conducting integrated reservoir analysis on many single wells, the correlation between single sandstone thickness and oil thickness seems good. Sketch sandstone is defined in this thesis as the principal part of carrier based on systematical analysis on lithology and sandstone thickness. Geometry connectivity of sandstone bodies was identified by the spatial superposition among them and was proved by the oil property features in oilfields. The connectivity between sandstone carriers is also hydrodynamically studied by observing and analyzed various diagenetic phenomena, especially the authigenic minerals and their forming sequence. The results were used to characterize transporting capability of sandstone carriers during the key petroleum migration periods. It was found that compaction and cementation are main causes to reduce pore space, and resolution may but not so importantly increases pore space after the occurrence of first migration. The cements of ferrocalcite and kiesel seem like the efficient index to demonstrate the hydraulic connection among sandy bodies. Diagenetic sequence and its relationship with petroleum migration phases are analyzed. Sandstone carrier of Chang 8 member was then characterized by studying their pore space and permeable properties. The results show an average porosity and permeability of Chang 8 carriers are respectively 8% and 0.50md, belongs to low porosity - low permeability reservoirs. Further, the physical properties of Chang 81 member are commonly better than those of Chang 82 member. Methods to reconstruct property of sandstone carrier during petroleum migration phase (late Jurassic) are built based on diagenetic sequence. Planal porosity, porosity and permeability of sandstone carrier in this period are statistically analyzed. One combining index - product of thickness and ancient porosity - is selected as the idea parameter to characterize sandstone carrier of late Jurassic after contrast with other parameters. Reservoirs of Chang 8 member in Longdong area are lithological reservoir controlled by sand body in which oil layers in middle part are clamped with dry layers in upper and lower parts, in a sandwich way. Based a newly proposed “migration-diagensis-remigration” model in low permeability sandstone of Chang 8 member in Longdong area, oil migration and accumulation processes during different periods are simulated with the reconstructed sandstone carriers system. Results match well with current reservoir distributions. Finally, suggestions for next favorable exploration areas are given based on all research achievements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing attentions have been paid to the subsurface geological storage for CO2 in view of the huge storage capacity of subsurface reservoirs. The basic requirement for subsurface CO2 storage is that the CO2 should be sequestrated as supercritical fluids (physical trapping), which may also interact with ambient reservoir rocks and formation waters, forming new minerals (chemical trapping). In order to the effective, durable and safe storage for CO2, enough storage space and stable sealing caprock with strong sealing capacity are necessitated, in an appropriate geological framework. Up till now, hydrocarbon reservoirs are to the most valid and appropriate CO2 storage container, which is well proven as the favorable compartment with huge storage capacity and sealing condition. The thesis focuses on two principal issues related to the storage and sealing capacity of storage compartment for the Qingshankou and Yaojia formations in the Daqingzijing block, Southern Songliao Basin, which was selected as the pilot well site for CO2-EOR storage. In the operation area, three facies, including deltaic plain, deltaic front and subdeep-deep lake facies associations, are recognized, in which 11 subfacies such as subaqueous distributary channel, river- mouth bar, interdistributary bay, sheet sandbody, crevasse splay and overflooding plain are further identified. These subfacies are the basic genetic units in the reservoir and sealing rocks. These facies further comprise the retrogradational and progradational depositional cycles, which were formed base- level rise and fall, respectively. During the regressive or lake lowstand stage, various sands including some turbidites and fans occurred mostly at the bottom of the hinged slope. During the progradation stage, these sands became smaller in size and episodically stepped backwards upon the slope, with greatly expanded and deeped lake. However, most of Cretaceous strata in the study area, localized in the basin centre under this stage, are mainly composed of grey or grizzly siltstones and grey or dark grey mudstones intercalated with minor fine sandstones and purple mudstones. On the base of borehole and core data, these siltstones are widespread, thin from 10 to 50 m thick, good grain sorting, and have relative mature sedimentary structures with graded bedding and cross- lamination or crossbeds such as ripples, which reflect strong hydrodynamic causes. Due to late diagenesis, pores are not widespread in the reservoirs, especially the first member of Qingshankou formation. There are two types of pores: primary pore and secondary cores. The primary pores include intergranular pores and micropores, and the secondary pores include emposieus and fracture pores. Throat channels related to pores is also small and the radius of throat in the first, second and third member of Qingshankou formation is only 0.757 μm, 0.802 μm and 0.631 μm respectively. In addition, based on analyzing the probability plot according to frequency of occurrence of porosity and permeability, they appear single- peaked distribution, which reflects strong hetero- geneity. All these facts indicate that the conditions of physical property of reservoirs are not better. One reason may be provided to interpret this question is that physical property of reservoirs in the study area is strong controlled by the depositional microfacies. From the statistics, the average porosity and permeability of microfacies such as subaqueous distributary channel, channel mouth bar, turbidites, is more than 9 percent and 1md respectively. On the contrary, the average porosity and permeability of microfacies including sand sheet, flagstone and crevasse splay are less than 9 percent and 0.2md respectively. Basically, different hydrodynamic environment under different microfacies can decide different physical property. According to the reservoir models of the first member of Qingshankou formation in the No. well Hei47 block, the character of sedimentary according to the facies models is accord to regional disposition evolution. Meantime, the parameter models of physical property of reservoir indicate that low porosity and low permeability reservoirs widespread widely in the study area, but the sand reservoirs located in the channels are better than other places and they are the main sand reservoirs. The distribution and sealing ability of fault- fractures and caprock are the key aspects to evaluate the stable conditions of compartments to store CO2 in the study area. Based on the core observation, the fractures widespread in the study area, especially around the wells, and most of them are located in the first and second member of Qingshankou formation, almost very few in the third member of Qingshankou formation and Yaojia formation instead. In addition, analyzing the sealing ability of eleven faults in the three-dimensional area in the study area demonstrates that most of faults have strong sealing ability, especially in the No. well Hei56 and Qing90-27. To some extent, the sealing ability of faults in the No. well Hei49, Qing4-6 and Qing84-29 are worse than others. Besides, the deposition environment of most of formations in the study area belongs to moderately deep and deep lake facies, which undoubtedly take advantage to caprocks composed of mudstones widespread and large scale under this deposition environment. In the study area, these mudstones distribute widely in the third member of Qingshankou formation, Yaojia and Nenjiang formation. The effective thickness of mudstone is nearly ~550m on an average with few or simple faults and fractures. In addition, there are many reservoir beds with widely- developed insulated interbeds consist of mudstones or silty mudstone, which can be the valid barrier to CO2 upper movement or leakage through diffusion, dispersion and convection. Above all, the closed thick mud caprock with underdeveloped fractures and reservoir beds can be taken regard as the favorable caprocks to provide stable conditions to avoid CO2 leakage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oil and gas migration is very important for theoretical hydrocarbon geology study and exploration practice, but related research is weak. Physical simulation is a main method to study oil migration. Systematic experiments were done to quantitatively describe the migration patterns, path characters and oil saturation by adjusting the possible dynamic factors respectively. The following conclusions were drawn. 1. Darcy velocity and pore throat diameter were calculated according to seepage cross-sectional area and glass beads arrangement. With such normalized Darcy velocity and pore throat diameter, the date from one and two dimensional experiments can be reasonably drawn in two phase diagrams. It is found that the migration pattern can be identified using only one dimensionless number L which is defined as the ration of capillary number and Bond number. 2. Oil saturated in the pores between glass beads was used as calibration and oil saturation in the path was measured by magnetic resonance imaging. The results show that oil saturation in the center of migration path can reach 100%, is higher than oil saturation in the edge of migration path. 3. Percolation backbone during secondary oil migration was identified experimentally using Hele-Shaw cell. The backbone formed mainly because of the spatial variation of the cluster conductivity caused by oil saturation heterogeneity, main resistant force change, and path shrinkage and snap-off. Percolation backbone improves hydrocarbon migration efficiency and is a favorable factor for reservoir forming. 4. In the three dimensional filling models, the thickness of the secondary migration path is mall. It is only 2.5cm even for the piston pattern. Inclination of the model is the main influencing factor of the secondary path width.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the study of fluvial sandstone reservoir in upper of Guantao group in Gudao and Gudong oilfields, this paper first introduces A.D.Miall's(1996a) architectural-element analysis method that was summarized from ground outcrop scale into the reservoir formation research of the study area, more subtly divides sedimentary microfacies and establishes sedimentary model of research area.on this base, this paper summarizes the laws of residual oil distribution of fluvial formation and the control effect of sedimentary microfacies to residual oil distribution, and reveals residual oil formation mechanism. These results have been applied to residual oil production, and the economic effect is good. This paper will be useful for residual oil research and production and enhancement of oil recovery in similar reservoir. The major conclusions of this paper are as follows. 1. Using the architectural-element analysis method to the core data, a interfacial division scheme of the first to the dixth scale is established for the studied fluvial formation. 2.Seven architectural-elements are divided in upper of Guantao group of study area. The sandstone group 5~1+2 of Neogene upper Gutao group belongs to high sinuous fine grain meandering river, and the sandstone group 6 is sandy braided river. 3. Inter layer, the residual oil saturation of "non-main layer" is higher than "main layer", but the residual recoverable reserve of former is larger. Therefore, "main layer" is the main body of residual oil distribution. The upper and middle part of inner layer has lower permeability and strong seeping resistance. Addition to gravity effect in process of driving, its driving efficiency is low; residual oil saturation is high. Because of controlling of inside non-permeable interlayer or sedimentary construction, the residual oil saturation of non-driving or lower driving efficiency position also is high. On plane, the position of high residual oil saturation mostly is at element LV, CS, CH (FF), FF etc, Which has lower porosity and permeability, as well as lens sand-body and sand-body edge that is not controlled by well-net, non-perfect area of injection and production, lower press difference resort area of inter-well diffiuent-line and shelter from fault, local high position of small structure. 4.Microscopic residual oil mainly includes the non-moved oil in the structure of fine pore network, oil in fine pore and path, oil segment in pore and path vertical to flow direction, oil spot or oil film in big pore, residual oil in non-connective pore. 5.The most essential and internal controlling factor of fluvial formation residual oil distribution is sedimentary microfacies. Status of injection and production is the exterior controlling factor of residual oil distribution. 6. The controlling effect of formation sedimentary microfacies to residual oil distribution indicates inter-layer vertical sedimentary facies change in scale of injection and production layer-series, planar sedimentary face change and inner-layer vertical sedimentary rhythm and interbed in single layer to residual oil distribution. 7. It is difficult to clear up the inter-layer difference in scale of injection and production layer-series. The using status of minor layer is not good and its residual oil saturation is high relatively. It is obvious that inter-layer vertical sedimentary facies changes control inter-layer residual oil distribution at the same or similar conditions of injection and production. For fluvial formation, this vertical sedimentary facies change mainly is positive gyration. Namely, from down to top, channel sediment (element CHL, LA) changes into over-bank sediment (element LV, CR, CS). 8. In water-injection developing process of transverse connecting fluvial sandstone oil formation, injection water always comes into channel nearby, and breaks through along channel and orientation of high pressure gradient, does not expand into side of channel until pressure gradient of channel orientation changes into low. It brings about that water-driving status of over-bank sedimentary element formation (LV, CR, CS) is not good, residual oil saturation is high. In non-connective abandoned channel element (CH) formation with channel, because this reverse is difficult to control by injection and production well-series, its using status is not good, even terribly not good, residual oil is enrichment. 9. The rhythm and sedimentary structure, sedimentary facies change in single sand body brings about vertical changes of formation character, growth character of inner layer interbed. These are important factor of controlling and affecting vertical water spread volume and inner layer residual oil forming and distribution in single sand body. Positive rhythm, is the principal part of fluvial sandstone inner layer sedimentary rhythm. Namely, from down to upside, rock grain granularity changes from coarse to fine, seeping ability changes from strong to feebleness. It brings about that water-driving status of inner layer upside is not good, residual oil saturation is high. Inner layer interbed has different degree affecting and controlling effect to seeping of oil and water. Its affecting degree lies on interbed thickness, extending scale, position, and jeted segment of production or injection well. The effect of interbed at upside of oil formation to oil and water seeping is less; the effect of interbed at middle of oil formation to oil and water seeping is more. 10. Indoor experiment and research indicate that wettability, permeability step, vertical permeability, position of Kmax and ratio of oil viscousity and water viscousity all have great effect on the water-driving recovery ratio. 11. Microscopic residual oil distribution is affected and controlled by formation pore network structure, pressure field distribution, and oil characteristic. 12.The residual oil forming mechanism: the over-bank sedimentary element and upper part of a positive rhythm sandstone have fine pore and throat network, permeability is low, displacement pressure of pore and throat is high. The water-driving power usually falls short of displacement pressure that brings about injection water does not spread into these pore and throat network, thereby immovable oil area, namely residual oil, is formed. At underside of channel sedimentary element and positive rhythm sandstone, porosity and permeability is relatively high, connecting degree of pore and throat is high, displacement pressure of pore and throat is low. Thereby injection water is easy to enter into pore and throat, driving oil in them. Because the pore space is irregular, the surface of pore wall is coarse and non-flat. That the oil locate on concave hole of pore wall and the dead angle of pore, and the oil attaches on surface of pore wall by surface tension, are difficult to be peeled off, becoming water-driving residual oil (remaining oil). On the other hand, Because flowing section lessens, flowing resistance increase, action of capillary fore, or seeping speed decreases at process of transfer at pass narrow throat path in the course carried by driving water. The "oil drop", "oil bead", or "oil segment" peeled off by driving water is difficult to carry and to drive out by water at less pressure difference. Thereby they are enclosed in pore to form discontinuous residual oil. 13.This results described above have been applied in nine develop blocks of Gudao and Gudong oilfield. Its applying effect is marked through local injection production adjustment, deploying replacement well, repair hole, replacement envelop, block off water and profile control etc. Relative method and technology can be applied to other oil production area of Shengli oilfield, and obtain better economic and societal effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study of dynamical mechanism of hydrocarbon secondary migration is the key research project of China Petroleum and Chemical Corporation in the ninth "Five-Year Plan", and this research is the hot and difficult spot and frontline in the domain of reservoir forming study in recent years. It is a common recognition that the dynamical mechanism of hydrocarbon's secondary migration is the important factor to control the reservoir type, distribution and oil/gas abundance. Therefore, to study this mechanism and establish the modes of hydrocarbon's migration and accumulation in different reservoirs under different conditions are of great theoretical meaningfulness and practical value on both developing the theory and method of hydrocarbon migration/accumulation dynamics in terrestrial rift-subsidence lacustrine basins and guiding the exploration and production. A laboratory for physical simulation of hydrocarbon's secondary migration/accumulation mechanism has been build up. 12 types of physical simulation tests to determine the volume of oil/gas migration and accumulation within these 3 series of plentiful hydrocarbon sources, different hydrocarbon abundance and pore level have been carried out under the guide of multidisciplinary theories, applying various methods and techniques, and 24 migration/accumulation modes have been established. The innovative results and recognition are as follows: 1, The oil/gas migration and accumulation modes for sandstones of moderate, fine grain size and silt in these six paleo depositional environments of shallow lake, fluvial, lacustrine, fluvial-deltaic, turbidite-delta, and salty-semi salty lake have been established. A new view has been put forward that the oil/gas volumetric increment during their migration and accumulation in different porous media of different rocks has similar features and evolution history. 2. During oil/gas migration and accumulation in different grain-sized porous media or different reservoirs, all the volumetric increment had experienced three period of rapid increasing, balanced and slower increasing and limited increasing. The dynamical process of oil/gas secondary migration and accumulation has been expounded. 3 The two new concepts of "source supply abundance" and "source supply intensity" have been proposed for the first time, and the physical simulation for hydrocarbon's migration, accumulation and forming a reservoir has been realized. 4, Source supply abundance is the important factor to control the accumulated volume of oil phase in the porous media. It is impossible to accumulate large amount of hydrocarbon volume in an open boundary system when the source supply abundance is low, i.e. impossible to form reservoirs of high productivity. 5 The above 12 types of physical simulation tests indicated that enough energy (pressure) of the oil sources is the decisive factor to ensure hydrocarbon's entering, flowing and accumulating through porous media, and both oil and gas phase will accumulate into the favorable places nearest to the oil sources. 6 The theory, method and related techniques for physical simulation of hydrocarbon's secondary migration/accumulation mechanism have been formed and applied to the E&P of Shengtuo rollover anticline and Niuzhuang turbidite lithological reservoirs. 7 This study developed the theory and method of hydrocarbon migration/accumulation dynamics in terrestrial rift-subsidence lacustrine basins, and the benefits and social effect are remarkable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in abrupt slop of depression, this paper builds sedimentary system and model, sandy bodies distribution, and pool-forming mechanism of subtle trap. There are some conclusions and views as follows. By a lot of well logging and seismic analysis, the author founded up the sequence stratigraphic of the abrupt slope, systematically illustrated the abrupt slope constructive framework, and pointed out that there was a special characteristics which was that south-north could be divided to several fault block and east-west could be carved up groove and the bridge in studying area. Based all these, the author divided the studying area to 3 fault block zone in which because of the groove became the basement rock channel down which ancient rivers breathed into the lake, the alluvial fan or fan delta were formed. In the paper, the author illustrated the depositional system and depositional model of abrupt slope zone, and distinguished 16 kinds of lithofacies and 3 kinds of depositional systems which were the alluvial fan and fan-delta system, lake system and the turbidite fan or turbidity current deposition. It is first time to expound completely the genetic pattern and distributing rule of the abrupt slope sandy-conglomeratic fan bodies. The abrupt slope sandy-conglomeratic fan bodies distribute around the heaves showing itself circularity shape. In studying area, the sandy-conglomeratic fan bodies mainly distribute up the southern slope of Binxian heave and Chenjiazhuang heave. There mainly are these sandy-conglomeratic fan body colony which distributes at a wide rage including the alluvial fan, sub-water fluvial and the turbidite fan or the other turbidity current deposition in the I fault block of the Wangzhuang area. In the II fault block there are fan-delta front and sub-water fluvial. And in the Binnan area, there mainly are those the alluvial fan (down the basement rock channel) and the sandy-conglomeratic fan body which formed as narrowband sub-water fluvial (the position of bridge of a nose) in the I fault block, the fan-delta front sandy-conglomeratic fan body in the H fault block and the fan-delta front and the turbidity current deposition sandy-conglomeratic fan body in the m fault block. Based on the reservoir outstanding characteristics of complex classic composition and the low texture maturity, the author comparted the reservoir micro-structure of the Sha-III and Sha-IV member to 4 types including the viscous crude cementation type, the pad cementation type, the calcite pore-funds type and the complex filling type, and hereby synthetically evaluated 4 types sandy- conglomeratic fan body reservoir. In the west-north abrupt slope zone of Dongying Depression, the crude oil source is belonging to the Sha-III and Sha-IV member, the deep oil of Lijin oilfield respectively come from the Sha-III and Sha-IV member, which belongs to the autogeny and original deposition type; and the more crude oil producing by Sha-IV member was migrated to the Wangzhuan area and Zhengjia area. The crude oil of Binnan oil-field and Shanjiasi oil-field belongs to mixed genetic. It is the first time to illustrate systematically the genetic of the viscous crude that largely being in the studying area, which are that the dissipation of the light component after pool-forming, the biological gradation action and the bath-oxidation action, these oil accumulation belonging to the secondary viscous crude accumulation. It is also the first time to compart the studying area to 5 pool-forming dynamical system that have the characteristic including the common pressure and abnormal pressure system, the self-fountain and other-fountain system and the closing and half-closing system etc. The 5 dynamical systems reciprocally interconnected via the disappearance or merger of the Ethology and the fluid pressure compartment zone, the fault and the unconformity surface, hereby formed duplicated pattern oil-gas collecting zone. Three oil-gas pool-forming pattern were founded, which included the self-fountain side-direction migrated collecting pattern, the self-fountain side-direction ladder-shape pool-forming pattern and the other-fountain pressure releasing zone migrated collecting pattern. A series of systemic sandy-conglomeratic fan bodies oil-gas predicting theory and method was founded, based on the groove-fan corresponding relation to confirm the favorable aim area, according as the characteristic of seismic-facies to identify qualitatively the sandy-conglomeratic fan bodies or its scale, used the temporal and frequency analysis technique to score the interior structure of the sandy- conglomeratic fan bodies, applied for coherent-data system analysis technology to describe the boundary of the sandy-conglomeratic fan bodies, and utilized the well logging restriction inversion technique to trace quantificational and forecast the sandy-conglomeratic fan bodies. Applied this technique, totally 15 beneficial sandy-conglomeratic fan bodies were predicted, in studying area the exploration was preferably guided, and the larger economic benefit and social benefit was acquired.