917 resultados para Polynomial Powers of Sigmoid
Resumo:
Most adaptive linearization circuits for the nonlinear amplifier have a feedback loop that returns the output signal oj'tne eunplifier to the lineurizer. The loop delay of the linearizer most be controlled precisely so that the convergence of the linearizer should be assured lot this Letter a delay control circuit is presented. It is a delay lock loop (ULL) with it modified early-lute gate and can he easily applied to a DSP implementation. The proposed DLL circuit is applied to an adaptive linearizer with the use of a polynomial predistorter, and the simulalion for a 16-QAM signal is performed. The simulation results show that the proposed DLL eliminates the delay between the reference input signal and the delayed feedback signal of the linearizing circuit perfectly, so that the predistorter polynomial coefficients converge into the optimum value and a high degree of linearization is achieved
Resumo:
In this work, we present a generic formula for the polynomial solution families of the well-known differential equation of hypergeometric type s(x)y"n(x) + t(x)y'n(x) - lnyn(x) = 0 and show that all the three classical orthogonal polynomial families as well as three finite orthogonal polynomial families, extracted from this equation, can be identified as special cases of this derived polynomial sequence. Some general properties of this sequence are also given.
Resumo:
In this paper we present error analysis for a Monte Carlo algorithm for evaluating bilinear forms of matrix powers. An almost Optimal Monte Carlo (MAO) algorithm for solving this problem is formulated. Results for the structure of the probability error are presented and the construction of robust and interpolation Monte Carlo algorithms are discussed. Results are presented comparing the performance of the Monte Carlo algorithm with that of a corresponding deterministic algorithm. The two algorithms are tested on a well balanced matrix and then the effects of perturbing this matrix, by small and large amounts, is studied.
Resumo:
In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of a balanced algorithm for computing the bilinear form of a matrix power is presented, i.e., an algorithm for which probability and systematic errors are of the same order, and this is compared with the computational cost for a corresponding deterministic method.
Resumo:
The problem of identification of a nonlinear dynamic system is considered. A two-layer neural network is used for the solution of the problem. Systems disturbed with unmeasurable noise are considered, although it is known that the disturbance is a random piecewise polynomial process. Absorption polynomials and nonquadratic loss functions are used to reduce the effect of this disturbance on the estimates of the optimal memory of the neural-network model.
Resumo:
The paper proposes a method of performing system identification of a linear system in the presence of bounded disturbances. The disturbances may be piecewise parabolic or periodic functions. The method is demonstrated effectively on two example systems with a range of disturbances.
Resumo:
In this paper we study convergence of the L2-projection onto the space of polynomials up to degree p on a simplex in Rd, d >= 2. Optimal error estimates are established in the case of Sobolev regularity and illustrated on several numerical examples. The proof is based on the collapsed coordinate transform and the expansion into various polynomial bases involving Jacobi polynomials and their antiderivatives. The results of the present paper generalize corresponding estimates for cubes in Rd from [P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), no. 6, 2133-2163].
Resumo:
In this paper, we classify all the global phase portraits of the quadratic polynomial vector fields having a rational first integral of degree 3. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A positive summability trigonometric kernel {K(n)(theta)}(infinity)(n=1) is generated through a sequence of univalent polynomials constructed by Suffridge. We prove that the convolution {K(n) * f} approximates every continuous 2 pi-periodic function f with the rate omega(f, 1/n), where omega(f, delta) denotes the modulus of continuity, and this provides a new proof of the classical Jackson`s theorem. Despite that it turns out that K(n)(theta) coincide with positive cosine polynomials generated by Fejer, our proof differs from others known in the literature.
Resumo:
The authors` recent classification of trilinear operations includes, among other cases, a fourth family of operations with parameter q epsilon Q boolean OR {infinity}, and weakly commutative and weakly anticommutative operations. These operations satisfy polynomial identities in degree 3 and further identities in degree 5. For each operation, using the row canonical form of the expansion matrix E to find the identities in degree 5 gives extremely complicated results. We use lattice basis reduction to simplify these identities: we compute the Hermite normal form H of E(t), obtain a basis of the nullspace lattice from the last rows of a matrix U for which UE(t) = H, and then use the LLL algorithm to reduce the basis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let L be a function field over the rationals and let D denote the skew field of fractions of L[t; sigma], the skew polynomial ring in t, over L, with automorphism sigma. We prove that the multiplicative group D(x) of D contains a free noncyclic subgroup.