948 resultados para Polycyclic aromatic compound
Resumo:
Resumen del póster presentado en PIC2015 – the 14th International Congress on Combustion By-Products and Their Health Effects, Umeå, Sweden, 14-17 June 2015.
Resumo:
Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser–Parr–Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree–Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree–Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an 'effective' Hamiltonian including only on-site interactions (Hubbard)? The performance of CI will be checked on small molecules. The electronic structure of azulene and fused azulene will be used to illustrate several aspects of the method. As regards graphene, several questions will be considered: (i) paramagnetic versus antiferromagnetic solutions, (ii) forbidden gap versus dot size, (iii) graphene nano-ribbons, and (iv) optical properties.
Resumo:
Thermal decomposition of flexible polyurethane foam (FPUF) was studied under nitrogen and air atmospheres at 550 °C and 850 °C using a laboratory scale reactor to analyse the evolved products. Ammonia, hydrogen cyanide and nitrile compounds were obtained in high yields in pyrolysis at the lower temperature, whereas at 850 °C polycyclic aromatic hydrocarbons (PAHs) and other semivolatile compounds, especially compounds containing nitrogen (benzonitrile, aniline, quinolone and indene) were the most abundant products. Different behaviour was observed in the evolution of polychlorodibenzo-p-dioxins and furans (PCDD/Fs) at 550 °C and 850 °C. At 550 °C, the less chlorinated congeners, mainly PCDF, were more abundant. Contrarily, at 850 °C the most chlorinated PCDD were dominant. In addition, the total yields of PCDD/Fs in the pyrolysis and combustion runs at 850 °C were low and quite similar.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants which can be derived from anthropogenic sources, such as combustion and discharges from extraction and transport, and natural processes, including leakage and erosion of fossil carbon. Natural PAH sources contribute, along with biological activities and terrestrial run-off, to the organic carbon content in sediments.The Barents Sea region is far from many anthropogenic sources of PAH, but production and trans-shipment of hydrocarbons is increasing. We present data for polycyclic aromatic hydrocarbon (PAH) concentrations in bottom sediments from 510 stations in the Barents and White Seas, and along the northern coast of Norway.
Resumo:
Geochemical changes in organic matter of bottom sediments from the Mozambique Basin at the river-sea barrier from the mouths of the Zambezi and Limpopo rivers toward the pelagic zone are discussed. Changes in bitumen, hydrolyzable material, humic acids, amino acids, n-alkanes, and polycyclic aromatic compounds resulting from genetic and diagenetic factors are described. This information is significant for paleoceanology reconstructions and for knowing ways of organic matter transformation into fossil forms.
Resumo:
We identify geochemical features of sedimentary organic matter in various morphostructural zones of the Antarctic sector of the Atlantic. We present background geochemical organic parameters for shelf and deep-sea sediments from the Weddell and Scotia Seas and the Bransfield Strait. Geochemical organic parameters are good indicators of environmental and facial variations in sediments and could be used for environmental monitoring of the World Ocean.
Resumo:
"July 2010."
Resumo:
From October 2014 to March 2015, I provided excavation oversight services at a property with substantial environmental concerns. The property in question is located near downtown Seattle and was formerly occupied by the Washington’s first coal gasification plant. The plant operated from 1888 to 1908 and produced coal gas for municipal use. A coal tar like substance with a characteristically high benzene concentration was a byproduct of the coal gasification process and heavily contaminated at or below the surface grade of the plant as shown in previous investigations on the property. Once the plant ceased operation in 1908 the property was left vacant until 1955 when the site was filled in and a service station was built on the property. The main goal of the excavation was not to achieve cleanup on the property, but to properly remove what contaminated soil was encountered during the redevelopment excavation. Areas of concern were identified prior to the commencement of the excavation and an estimation of the extent of contamination on the property was developed. “Hot spots” of contaminated soil associated with the fill placed after 1955 were identified as areas of concern. However, the primary contaminant plume below the property was likely sourced from the coal gasification plant, which operated at an approximate elevation of 20 feet. We planned to constrain the extents of the soil contamination below the property as the redevelopment excavation progressed. As the redevelopment excavation was advanced down to an elevation of approximately 20 feet, soil samples were collected to bound the extents of contamination in the upper portion of the site. The hot spots, known pockets of carcinogenic polycyclic aromatic hydrocarbons (cPAH) located above 20 feet elevation, were excavated as part of the redevelopment excavation. Once a hot spot was excavated, soil samples were collected from the north, south, east, west and bottom sidewalls of the hot spot excavation to check for remaining cPAH. Additionally, four underground storage tanks (USTs) associated with the service station were discovered and subsequently removed. Soil samples were also collected from the resulting UST excavation sidewalls to check for remaining petroleum hydrocarbons. Once the excavation reached its final excavation depth of 20 to 16 feet in elevation, bottom of excavation samples were collected on a 35 foot by 35 foot grid to test for concentrations of contaminants remaining onsite. Once the redevelopment excavation was complete, soils observed from borings drilled for either structural elements, geotechnical wells, or environmental wells were checked for any evidence of contamination using field screening techniques. Evidence of contamination was used to identify areas below the final excavation grade which had been impacted by the operation of the coal gasification plant. Samples collected from the excavation extents of hot spots and USTs show that it was unlikely that any contamination traveled from the post-1955 grade down to the pre-1955 grade. Additionally, the lack of benzene in the bottom of excavation samples suggests that a release from the coal gasification plant occurred below the redevelopment excavation final elevations of 20 to 16 feet. Qualitative data collected from borings for shoring elements and wells indicated that the spatial extent of the subsurface contaminant plume was different than initially estimated. Observations of spoils show that soil contamination extends further to the southwest and not as far to the east and north than originally estimated. Redefining the extent of the soil contamination beneath the property will allow further subsurface investigations to focus on collecting quantitative data in areas that still represent data gaps on the property, and passing over areas that have shown little signs of contamination. This information will help with the formation of a remediation plan should the need to clean up the site arise in the future.
Resumo:
The cytochromes P450 are a large family of oxidative haemoproteins that are responsible for a wide variety of oxidative transformations in a variety of organisms. This review focuses upon the reactions catalyzed specifically by bacterial enzymes, which includes aliphatic hydroxylation, alkene epoxidation, aromatic hydroxylation, oxidative phenolic coupling, heteroatom oxidation and dealkylation, and multiple oxidations including C-C bond cleavage. The potential for the practical application of the oxidizing power of these enzymes is briefly discussed.
Resumo:
We report an efficient synthetic route to obtaining a stable analogue of 5,6-dihydroxyindole. These analogues can be used to build controlled composition model melanin biopolymers for solid state and spectroscopic studies of this important biomolecule.