898 resultados para Paper chemicals
Resumo:
The search for new renewable materials has intensified in recent years. Pulp and paper mill process streams contain a number of potential compounds which could be used in biofuel production and as raw materials in the chemical, food and pharmaceutical industries. Prior to utilization, these compounds require separation from other compounds present in the process stream. One feasible separation technique is membrane filtration but to some extent, fouling still limits its implementation in pulp and paper mill applications. To mitigate fouling and its effects, foulants and their fouling mechanisms need to be well understood. This thesis evaluates fouling in filtration of pulp and paper mill process streams by means of polysaccharide model substance filtrations and by development of a procedure to analyze and identify potential foulants, i.e. wood extractives and carbohydrates, from fouled membranes. The model solution filtration results demonstrate that each polysaccharide has its own fouling mechanism, which also depends on the membrane characteristics. Polysaccharides may foul the membranes by adsorption and/or by gel/cake layer formation on the membrane surface. Moreover, the polysaccharides interact, which makes fouling evaluation of certain compound groups very challenging. Novel methods to identify wood extractive and polysaccharide foulants are developed in this thesis. The results show that it is possible to extract and identify wood extractives from membranes fouled in filtration of pulp and paper millstreams. The most effective solvent was found to be acetone:water (9:1 v/v) because it extracted both lipophilic extractives and lignans at high amounts from the fouled membranes and it was also non-destructive for the membrane materials. One hour of extraction was enough to extract wood extractives at high amounts for membrane samples with an area of 0.008 m2. If only qualitative knowledge of wood extractives is needed a simplified extraction procedure can be used. Adsorption was the main fouling mechanism in extractives-induced fouling and dissolved fatty and resin acids were mostly the reason for the fouling; colloidal fouling was negligible. Both process water and membrane characteristics affected extractives-induced fouling. In general, the more hydrophilic regenerated cellulose (RC) membrane fouled less that the more hydrophobic polyethersulfone (PES) and polyamide (PA) membranes independent of the process water used. Monosaccharide and uronic acid units could also be identified from the fouled synthetic polymeric membranes. It was impossible to analyze all monosaccharide units from the RC membrane because the analysis result obtained contained degraded membrane material. One of the fouling mechanisms of carbohydrates was adsorption. Carbohydrates were not potential adsorptive foulants to the sameextent as wood extractives because their amount in the fouled membranes was found to be significantly lower than the amount of wood extractives.
Resumo:
Percarboxylic acids are commonly used as disinfection and bleaching agents in textile, paper, and fine chemical industries. All of these applications are based on the oxidative potential of these compounds. In spite of high interest in these chemicals, they are unstable and explosive chemicals, which increase the risk of synthesis processes and transportation. Therefore, the safety criteria in the production process should be considered. Microreactors represent a technology that efficiently utilizes safety advantages resulting from small scale. Therefore, microreactor technology was used in the synthesis of peracetic acid and performic acid. These percarboxylic acids were produced at different temperatures, residence times and catalyst i.e. sulfuric acid concentrations. Both synthesis reactions seemed to be rather fast because with performic acid equilibrium was reached in 4 min at 313 K and with peracetic acid in 10 min at 343 K. In addition, the experimental results were used to study the kinetics of the formation of performic acid and peracetic acid. The advantages of the microreactors in this study were the efficient temperature control even in very exothermic reaction and good mixing due to the short diffusion distances. Therefore, reaction rates were determined with high accuracy. Three different models were considered in order to estimate the kinetic parameters such as reaction rate constants and activation energies. From these three models, the laminar flow model with radial velocity distribution gave most precise parameters. However, sulfuric acid creates many drawbacks in this synthesis process. Therefore, a ´´greener´´ way to use heterogeneous catalyst in the synthesis of performic acid in microreactor was studied. The cation exchange resin, Dowex 50 Wx8, presented very high activity and a long life time in this reaction. In the presence of this catalyst, the equilibrium was reached in 120 second at 313 K which indicates a rather fast reaction. In addition, the safety advantages of microreactors were investigated in this study. Four different conventional methods were used. Production of peracetic acid was used as a test case, and the safety of one conventional batch process was compared with an on-site continuous microprocess. It was found that the conventional methods for the analysis of process safety might not be reliable and adequate for radically novel technology, such as microreactors. This is understandable because the conventional methods are partly based on experience, which is very limited in connection with totally novel technology. Therefore, one checklist-based method was developed to study the safety of intensified and novel processes at the early stage of process development. The checklist was formulated using the concept of layers of protection for a chemical process. The traditional and three intensified processes of hydrogen peroxide synthesis were selected as test cases. With these real cases, it was shown that several positive and negative effects on safety can be detected in process intensification. The general claim that safety is always improved by process intensification was questioned.
Resumo:
The main advantage of organic electronics over the more widespread inorganic counterparts lies not in the electrical performance, but rather in the solution processability that opens up for low-cost flexible electronics (e.g. displays, sensors and smart tags) fabricated by using printing techniques. Replacing the commonly used laboratory-scale fabrication techniques with mass-printing techniques is, however, truly challenging, especially when low-voltage operation is required. In this thesis it is, nevertheless, demonstrated that low-voltage organic transistors can be fully printed with a similar performance to that of transistors made by laboratory scale techniques. The use of an ion-modulated type of organic field effect transistor (OFET) not only enabled low-voltage operation and printability, but was also found to result in low sensitivity to the surface roughness of the substrate. This allows not only the use of low-cost plastic substrates, but even the use of paper as a substrate. However, while absorption into the porous paper surface is advantageous in a graphical printing process, by reducing the spreading and the coffee-stain effect and by improving the adhesion, it provides great challenges when applying thin electrically active layers. In spite of these difficulties we were able to demonstrate the first low-voltage OFET to be fabricated on paper. We have also shown that low-cost incandescent lamps can be used for sintering printed metal-nanoparticles, and that the process was especially suitable on paper and compatible with a roll-to-roll manufacturing process.
Resumo:
Den snart 200 år gamla vetenskapsgrenen organisk synteskemi har starkt bidragit till moderna samhällens välfärd. Ett av flaggskeppen för den organiska synteskemin är utvecklingen och produktionen av nya läkemedel och speciellt de aktiva substanserna däri. Därmed är det viktigt att utveckla nya syntesmetoder, som kan tillämpas vid framställningen av farmaceutiskt relevanta målstrukturer. I detta sammanhang är den ultimata målsättningen dock inte endast en lyckad syntes av målmolekylen, utan det är allt viktigare att utveckla syntesrutter som uppfyller kriterierna för den hållbara utvecklingen. Ett av de centralaste verktygen som en organisk kemist har till förfogande i detta sammanhang är katalys, eller mera specifikt möjligheten att tillämpa olika katalytiska reaktioner vid framställning av komplexa målstrukturer. De motsvarande industriella processerna karakteriseras av hög effektivitet och minimerad avfallsproduktion, vilket naturligtvis gynnar den kemiska industrin samtidigt som de negativa miljöeffekterna minskas avsevärt. I denna doktorsavhandling har nya syntesrutter för produktion av finkemikalier med farmaceutisk relevans utvecklats genom att kombinera förhållandevis enkla transformationer till nya reaktionssekvenser. Alla reaktionssekvenser som diskuteras i denna avhandling påbörjades med en metallförmedlad allylering av utvalda aldehyder eller aldiminer. De erhållna produkterna innehållende en kol-koldubbelbindning med en närliggande hydroxyl- eller aminogrupp modifierades sedan vidare genom att tillämpa välkända katalytiska reaktioner. Alla syntetiserade molekyler som presenteras i denna avhandling karakteriseras som finkemikalier med hög potential vid farmaceutiska tillämpningar. Utöver detta tillämpades en mängd olika katalytiska reaktioner framgångsrikt vid syntes av dessa molekyler, vilket i sin tur förstärker betydelsen för de katalytiska verktygen i organiska kemins verktygslåda.
Resumo:
This thesis consists of four articles and an introductory section. The main research questions in all the articles refer to the changes in the representativeness of the Finnish Paper Workers' Union. Representativeness stands for the entire entity of external, internal, legal and reputational factors that enable the labor union to represent its members and achieve its goals. This concept is based on an extensive reading of quantitative and qualitative industrial relations literature, which includes works based on Marxist labor-capital relations (such as Hyman's industrial relations studies), and more recent union density studies as well as gender- and ethnic diversity-based 'union revitalization' studies. Müller-Jentsch's German studies of industrial relations have been of particular importance as well as Streeck's industrial unionism and technology studies. The concept of representativeness is an attempt to combine the insights of these diverse strands of literature and bring the scientific discussion of labor unions back to the core of a union's function: representing its members. As such, it can be seen as a theoretical innovation. The concept helps to acknowledge both the heterogeneity of the membership and the totality of a labor union organization. The concept of representativeness aims to move beyond notions of 'power'. External representativeness can be expressed through the position of the labor union in the industrial relations system and the economy. Internal representativeness focuses on the aspects of labor unions that relate to the function of the union as an association with members, such as internal democracy. Legal representativeness lies in the formal legal position of the union – its rights and instruments. This includes collective bargaining legislation, co-decision rules and industrial conflict legislation. Reputational representativeness is related to how the union is seen by other actors and the general public, and can be approximated using data on strike activity. All these aspects of representativeness are path-dependent, and show the results of previous struggles over issues. The concept of representativeness goes beyond notions of labor union power and symbolizes an attempt to bring back the focus of industrial relations studies to the union's basic function of representing its members. The first article shows in detail the industrial conflict of the Finnish paper industry in 2005. The intended focus was the issue of gender in the negotiations over a new collective agreement, but the focal point of the industrial conflict was the issue of outsourcing and how this should be organized. Also, the issue of continuous shifts as an issue of working time was very important. The drawn-out conflict can be seen as a struggle over principles, and under pressure the labor union had to concede ground on the aforementioned issues. The article concludes that in this specific conflict, the union represented its' female members to a lesser extent, because the other issues took such priority. Furthermore, because of the substantive concessions. the union lost some of its internal representativeness, and the stubbornness of the union may have even harmed the reputation of the union. This article also includes an early version of the representativeness framework, through which this conflict is analyzed. The second article discusses wage developments, union density and collective bargaining within the context of representativeness. It is shown that the union has been able to secure substantial benefits for its members, regardless of declining employment. Collective agreements have often been based on centralized incomes policies, but the paper sector has not always joined these. Attention is furthermore paid to the changing competition of the General Assembly, with a surprisingly strong position of the Left Alliance still. In an attempt to replicate analysis of union density measures, an analysis of sectoral union density shows that similar factors as in aggregate data influence this measure, though – due to methodological issues – the results may not be robust. On this issue, it can be said that the method of analysis for aggregate union density is not suitable for sectoral union density analysis. The increasingly conflict-ridden industrial relations predicted have not actually materialized. The article concludes by asking whether the aim of ever-increasing wages is a sustainable one in the light of the pressures of globalization, though wage costs are a relatively small part of total costs. The third article discusses the history and use of outsourcing in the Finnish paper industry. It is shown using Hyman's framework of constituencies that over time, the perspective of the union changed from 'members of the Paper Workers' Union' to a more specific view of who is a core member of the union. Within the context of the industrial unionism that the union claims to practice, this is an important change. The article shows that the union more and more caters for a core group, while auxiliary personnel is less important to the union's identity and constituencies, which means that the union's internal representativeness has decreased. Maintenance workers are an exception; the union and employers have developed a rotating system that increases the efficient allocation of these employees. The core reason of the exceptional status of maintenance personnel is their high level of non-transferable skills. In the end it is debatable whether the compromise on outsourcing solves the challenges facing the industry. The fourth article shows diverging discourses within the union with regard to union-employer partnership for competitiveness improvements and instruments of local union representatives. In the collective agreement of 2008, the provision regulating wage effects of significant changes in the organization or content of work was thoroughly changed, though this mainly reflected decisions by the Labor Court on the pre-2008 version of the provision. This change laid bare the deep rift between the Social Democratic and Left Alliance (ex-Communist) factions of the union. The article argues that through the changed legal meaning of the provision, the union was able to transform concession bargaining into a basis for partnership. The internal discontent about this issue is nonetheless substantial and a threat to the unity of the union, both locally and at the union level. On the basis of the results of the articles, other factors influencing representativeness, such as technology and EU law and an overview of the main changes in the Finnish paper industry, it is concluded that, especially in recent years, the Finnish Paper Workers' Union has lost some of its representativeness. In particular, the loss of the efficiency of strikes is noted, the compromise on outsourcing which may have alienated a substantial part of the union's membership, and the change in the collective agreement of 2008 have caused this decline. In the latter case, the internal disunion on that issue shows the constraints of the union's internal democracy. Furthermore, the failure of the union to join the TEAM industrial union (by democratic means), the internal conflicts and a narrow focus on its own sector may also hurt the union in the future, as the paper industry in Finland is going through a structural change. None of these changes in representativeness would have been so drastic without the considerable pressure of globalization - in particular changing markets, changing technology and a loss of domestic investments to foreign investments, which in the end have benefited the corporations more than the Finnish employees of these corporations. Taken together, the union risks becoming socially irrelevant in time, though it will remain formally very strong on the basis of its institutional setting and financial situation.
Resumo:
This study is made as a part of the Chembaltic (Risks of Maritime Transportation of Chemicals in Baltic Sea) project which gathers information on the chemicals transported in the Baltic Sea. The purpose of this study is to provide an overview of handling volumes of liquid bulk chemicals (including liquefied gases) in the Baltic Sea ports and to find out what the most transported liquid bulk chemicals in the Baltic Sea are. Oil and oil products are also viewed in this study but only in a general level. Oils and oil products may also include chemical-related substances (e.g. certain bio-fuels which belong to MARPOL annex II category) in some cargo statistics. Chemicals in packaged form are excluded from the study. Most of the facts about the transport volumes of chemicals presented in this study are based on secondary written sources of Scandinavian, Russian, Baltic and international origin. Furthermore, statistical sources, academic journals, periodicals, newspapers and in later years also different homepages on the Internet have been used as sources of information. Chemical handling volumes in Finnish ports were examined in more detail by using a nationwide vessel traffic system called PortNet. Many previous studies have shown that the Baltic Sea ports are annually handling more than 11 million tonnes of liquid chemicals transported in bulk. Based on this study, it appears that the number may be even higher. The liquid bulk chemicals account for approximately 4 % of the total amount of liquid bulk cargoes handled in the Baltic Sea ports. Most of the liquid bulk chemicals are handled in Finnish and Swedish ports and their proportion of all liquid chemicals handled in the Baltic Sea is altogether over 50 %. The most handled chemicals in the Baltic Sea ports are methanol, sodium hydroxide solution, ammonia, sulphuric and phosphoric acid, pentanes, aromatic free solvents, xylenes, methyl tert-butyl ether (MTBE) and ethanol and ethanol solutions. All of these chemicals are handled at least hundred thousand tonnes or some of them even over 1 million tonnes per year, but since chemical-specific data from all the Baltic Sea countries is not available, the exact tonnages could not be calculated in this study. In addition to these above-mentioned chemicals, there are also other high volume chemicals handled in the Baltic Sea ports (e.g. ethylene, propane and butane) but exact tonnes are missing. Furthermore, high amounts of liquid fertilisers, such as solution of urea and ammonium nitrate in water, are transported in the Baltic Sea. The results of the study can be considered indicative. Updated information about transported chemicals in the Baltic Sea is the first step in the risk assessment of the chemicals. The chemical-specific transportation data help to target hazard or e.g. grounding/collision risk evaluations to chemicals that are handled most or have significant environmental hazard potential. Data gathered in this study will be used as background information in later stages of the Chembaltic project when the risks of the chemicals transported in the Baltic Sea are assessed to highlight the chemicals that require special attention from an environmental point of view in potential marine accident situations in the Baltic Sea area.
Resumo:
The last decade has shown that the global paper industry needs new processes and products in order to reassert its position in the industry. As the paper markets in Western Europe and North America have stabilized, the competition has tightened. Along with the development of more cost-effective processes and products, new process design methods are also required to break the old molds and create new ideas. This thesis discusses the development of a process design methodology based on simulation and optimization methods. A bi-level optimization problem and a solution procedure for it are formulated and illustrated. Computational models and simulation are used to illustrate the phenomena inside a real process and mathematical optimization is exploited to find out the best process structures and control principles for the process. Dynamic process models are used inside the bi-level optimization problem, which is assumed to be dynamic and multiobjective due to the nature of papermaking processes. The numerical experiments show that the bi-level optimization approach is useful for different kinds of problems related to process design and optimization. Here, the design methodology is applied to a constrained process area of a papermaking line. However, the same methodology is applicable to all types of industrial processes, e.g., the design of biorefiners, because the methodology is totally generalized and can be easily modified.
Resumo:
The theoretical research of the study concentrated on finding theoretical frameworks to optimize the amount of needed stock keeping units (SKUs) in manufacturing industry. The goal was to find ways for a company to acquire an optimal collection of stock keeping units needed for manufacturing needed amount of end products. The research follows constructive research approach leaning towards practical problem solving. In the empirical part of this study, a recipe search tool was developed to an existing database used in the target company. The purpose of the tools was to find all the recipes meeting the EUPS performance standard and put the recipes in a ranking order using the data available in the database. The ranking of the recipes was formed from the combination of the performance measures and price of the recipes. In addition, the tool researched what kind of paper SKUs were needed to manufacture the best performing recipes. The tool developed during this process meets the requirements. It eases and makes it much faster to search for all the recipes meeting the EUPS standard. Furthermore, many future development possibilities for the tool were discovered while writing the thesis.
Resumo:
It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.
Resumo:
For the paper mill profitability it is crucial to minimize overproduction and underproduction. Overproduction and underproduction both generate undesired costs and profit losses in paper mill production. This master’s thesis examines paper production order fulfillment subject from paper production level point of view. Research and development approach is selected due to clarification requirements in lately implemented manufacturing execution system. Manufacturing execution systems are generally expected to offer reliable and accurate information about mill production details. However, confusions are likely to occur after implementation of new manufacturing execution system. These confusions are usually harmful and become cumulatively more influential the longer they keep occurring. In this master’s thesis is presented actions to improve order fulfillment at paper mill production level. Central points of the improvement actions are a model for successful order fulfillment in paper mill production and manufacturing execution system catalogue configuration redesign. Improvement actions are implemented in Jokilaakso paper production plant and it is examined as a case study. In the end of this master’s thesis is presented performance measurements which demonstrate order fulfillment from case Jokilaakso.
Resumo:
In this positioning paper transition management (TM) and the sustainable nutrient economy are addressed. We discuss TM from its scholarly origins in the 1990’s to its implementation as a comprehensive sector-wide policy program on sustainability in The Netherlands during the first decade of the 2000´s. Although the program was innovative and provoked a new approach to environmental policy and governance, the program at large failed to set the right conditions under which sustainable transition take place. Lessons from the Netherlands, both successful and less successful, are addressed in this positioning paper to inform Finnish governmental and knowledge institutes on how (not) to implement TM on environmental issues. When looking at sustainable nutrient economy the paper takes a historical view at how problems with nutrients (especially phosphates) were dealt with in the Netherlands during the post World War II era. This transition did not occur easily. In the agricultural sector environmental policies to prevent nutrient problems were not easily accepted, as large agricultural economic interests were at stake and the sector’s main actors were generally opposed to (radical) environmental transition. Currently, sustainable nutrient economy initiatives are starting to receive attention on the political agenda once again. In 2011 a sector- and chain-wide covenant was signed, showing that sustainable nutrient transition goals get commitment from stakeholders throughout the nutrient chain. We judge that TM provides useful elements that are applicable to Finnish governance modes to support sustainable nutrient economy transition. However, the Finnish government should be careful when implementing TM to prevent making the same mistakes the Dutch government made in previous years.
Resumo:
This research report illustrates and examines new operation models for decreasing fixed costs and transforming them into variable costs in the field of paper industry. The report illustrates two cases – a new operation model for material logistics in maintenance and an examination of forklift truck fleet outsourcing solutions. Conventional material logistics in maintenance operation is illustrated and some problems related to conventional operation are identified. A new operation model that solves some of these problems is presented including descriptions of procurement and service contracts and sources of added value. Forklift truck fleet outsourcing solutions are examined by illustrating the responsibilities of a host company and a service provider both before and after outsourcing. The customer buys outsourcing services in order to improve its investment productivity. The mechanism of how these services affect the customer company’s investment productivity is illustrated.
Resumo:
Interest in water treatment by electrochemical methods has grown in recent years. Electrochemical oxidation has been applied particularly successfully to degrade different organic pollutants and disinfect drinking water. This study summarizes the effectiveness of the electrochemical oxidation technique in inactivating different primary biofilm forming paper mill bacteria as well as sulphide and organic material in pulp and paper mill wastewater in laboratory scale batch experiments. Three different electrodes, borondoped diamond (BDD), mixed metal oxide (MMO) and PbO2, were employed as anodes. The impact on inactivation efficiency of parameters such as current density and initial pH or chloride concentration of synthetic paper machine water was studied. The electrochemical behaviour of the electrodes was investigated by cyclic voltammetry with MMO, BDD and PbO2 electrodes in synthetic paper mill water as also with MMO and stainless steel electrodes with biocides. Some suggestions on the formation of different oxidants and oxidation mechanisms were also presented during the treatment. Aerobic paper mill bacteria species (Deinococcus geothermalis, Pseudoxanthomonas taiwanensis and Meiothermus silvanus) were inactivated effectively (>2 log) at MMO electrodes by current density of 50 mA/cm2 and the time taken three minutes. Increasing current density and initial chloride concentration of paper mill water increased the inactivation rate of Deinococcus geothermalis. The inactivation order of different bacteria species was Meiothermus silvanus > Pseudoxanthomonas taiwanensis > Deinococcus geothermalis. It was observed that inactivation was mainly due to the electrochemically generated chlorine/hypochlorite from chloride present in the water and also residual disinfection by chlorine/hypochlorite occurred. In real paper mill effluent treatment sulphide oxidation was effective with all the different initial concentrations (almost 100% reduction, current density 42.9 mA/cm2) and also anaerobic bacteria inactivation was observed (almost 90% reduction by chloride concentration of 164 mg/L and current density of 42.9 mA/cm2 in five minutes). Organic material removal was not as effective when comparing with other tested techniques, probably due to the relatively low treatment times. Cyclic voltammograms in synthetic paper mill water with stainless steel electrode showed that H2O2 could be degraded to radicals during the cathodic runs. This emphasises strong potential of combined electrochemical treatment with this biocide in bacteria inactivation in paper mill environments.