920 resultados para POVIDONE-IODINE IRRIGATION
Resumo:
Sustaining irrigated agriculture to meet food production needs while maintaining aquatic ecosystems is at the heart of many policy debates in various parts of the world, especially in arid and semi-arid areas. Researchers and practitioners are increasingly calling for integrated approaches, and policy-makers are progressively supporting the inclusion of ecological and social aspects in water management programs. This paper contributes to this policy debate by providing an integrated economic-hydrologic modeling framework that captures the socio-economic and environmental effects of various policy initiatives and climate variability. This modeling integration includes a risk-based economic optimization model and a hydrologic water management simulation model that have been specified for the Middle Guadiana basin, a vulnerable drought-prone agro-ecological area with highly regulated river systems in southwest Spain. Namely, two key water policy interventions were investigated: the implementation of minimum environmental flows (supported by the European Water Framework Directive, EU WFD), and a reduction in the legal amount of water delivered for irrigation (planned measure included in the new Guadiana River Basin Management Plan, GRBMP, still under discussion). Results indicate that current patterns of excessive water use for irrigation in the basin may put environmental flow demands at risk, jeopardizing the WFD s goal of restoring the ?good ecological status? of water bodies by 2015. Conflicts between environmental and agricultural water uses will be stressed during prolonged dry episodes, and particularly in summer low-flow periods, when there is an important increase of crop irrigation water requirements. Securing minimum stream flows would entail a substantial reduction in irrigation water use for rice cultivation, which might affect the profitability and economic viability of small rice-growing farms located upstream in the river. The new GRBMP could contribute to balance competing water demands in the basin and to increase economic water productivity, but might not be sufficient to ensure the provision of environmental flows as required by the WFD. A thoroughly revision of the basin s water use concession system for irrigation seems to be needed in order to bring the GRBMP in line with the WFD objectives. Furthermore, the study illustrates that social, economic, institutional, and technological factors, in addition to bio-physical conditions, are important issues to be considered for designing and developing water management strategies. The research initiative presented in this paper demonstrates that hydro-economic models can explicitly integrate all these issues, constituting a valuable tool that could assist policy makers for implementing sustainable irrigation policies.
Resumo:
Mediterranean climate is characterized by hot summer, high evapotranspiration rates, and scarce precipitations (400 mm per year) during grapevine cycle. These extremely dry conditions affect vineyard productivity and sustainability. Supplementary irrigation is a needed practice in order to maintain yield and quality. Almost all Spanish grape growing regions are characterized by these within this context, especially in the center region, where this study was performed. The main objective of this work was to study the influence of irrigation on yield and quality. For this aim, we applied different levels of irrigation (mm of water applied) during different stages of growth and berry maturity. Four experimental treatments were applied considering the amount of water and the moment of the application: T1: Water irrigation (420 mm) applied from bloom to maturity. T2: Corresponded to the traditional irrigation scheduling, from preveraison to maturity (154 mm). T3: Water irrigation from bloom to preveraison, and water deficit from veraison to maturity (312 mm). T4: Irrigation applied from preveraison to maturity (230 mm) Experimental vineyard, cv. Cabernet Sauvignon, was located in a commercial vineyard (Bodegas Licinia S.L.) in the hot region of Morata de Tajuña (Madrid). The trial was performed during 2010 and 2011 seasons. Our results showed that yield increased from 2010 to 2011 in the treatments with a higher amount of water appli ed, T1 and T3 (24 and 10 % of yield increase respectively). This was mainly due to an increase in bud fertility (nº of bunches per shoot). Furthermore, sugar content was higher in T3 (27.3 ºBrix), followed by T2 (27 ºBrix). By contrast, T4 (irrigation from veraison) presented the lowest solid soluble concentration and the highest acidity. These results suggest that grapevine has an intrinsic capacity to adapt to its environment. However, this adaptation capacity should be evaluated considering the sensibility of quality parameters during the maturity period (acidity, pH, aroma, color...) and its impact on yield. Here, we demonstrated that a higher amount of water irrigation applied was no linked to a negative effect on quality.
Resumo:
Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4+ and NO3−) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO2 emissions by 21% (P < 0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3−-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation.
Resumo:
The aim of this study is to determine the yield and composition of the essential oil of cornmint (Mentha arvensis L.) grown in the irrigation area of Santiago del Estero, Argentina. Field tests were carried out under irrigation conditions, harvesting when 70% flowering was reached (in the summer and at the end of the winter seasons). Essential oil yields were 2% in the first cut and 1.6% in the second cut, respectively, the major constituents of the essential oil being menthol, menthone, isomenthone and menthofuran. In both cases, a high concentration of menthol was obtained, although during the winter the content decreased, increasing the concentration of menthofuran. It is concluded that during the summer a higher yield and better quality of essential oil are produced.
Resumo:
The current research aims to analyse theoretically and evaluate a self-manufactured simple design for subsurface drip irrigation (SDI) emitter to avoid root and soil intrusion. It was composed of three concentric cylindrical elements: an elastic silicone membrane; a polyethylene tube with two holes drilled on its wall for water discharge; and a vinyl polychloride protector system to wrap the other elements. The discharge of the emitter depends on the change in the membrane diameter when it is deformed by the water pressure. The study of the operation of this emitter is a new approach that considers mechanical and hydraulic principles. Thus, the estimation on the membrane deformation was based on classical mechanical stress theories in composite cylinders. The hydraulic principles considered the solid deformation due to force based on water pressure and the general Darcy–Weisbach head-loss equation. Twenty emitter units, with the selected design, were handcrafted in a lathe and were used in this study. The measured pressure/discharge relationship for the emitters showed good agreement with that calculated by the theoretical approach. The variation coefficient of the handcrafted emitters was high compared to commercial emitters. Results from field evaluations showed variable values for the relative flow variation, water emission uniformity and relative flow rate coefficients, but no emitter was obstructed. Therefore, the current emitter design could be suitable for SDI following further studies to develop a final prototype.
Resumo:
A study of the assessment of the irrigation water use has been carried out in the Spanish irrigation District “Río Adaja” that has analyzed the water use efficiency and the water productivity indicators for the main crops for three years: 2010-2011, 2011-2012 and 2012-2013. A soil water balance model was applied taking into ccount climatic data for the nearby weather station and soil properties. Crop water requirements were calculated by the FAO Penman- Monteith with the application of the dual crop coefficient and by considering the readily vailable soil water content (RAW) concept. Likewise, productivity was measured by the indexes: annual relative irrigation supply (ARIS), annual relative water supply (ARWS), relative rainfall supply (RRS), the water productivity (WP), the evapotranspiration water productivity (ETWP), and the irrigation water productivity (IWP. The results show that in most crops deficit irrigation was applied (ARIS<1) in the first two years however, the IWP improved. This was higher in 2010-2011 which corresponded to the highest effective precipitation Pe. In general, the IWP (€.m-3) varied amongcrops but crops such as: onion (4.14, 1.98 and 2.77 respectively for the three years), potato (2.79, 1.69 and 1.62 respectively for the three years), carrot (1.37, 1.70 and 1.80 respectively for the three years) and barley (1.21, 1.16 and 0.68 respectively for the three years) showed the higher values. Thus, it is highlighted the y could be included into the cropping pattern which would maximize the famer’s gross income in the irrigation district.
Resumo:
The conference program will cover all areas of environmental and resource economics, ranging from topics prevailing in the general debate, such as climate change, energy sources, water management and ecosystem services evaluation, to more specialized subjects such as biodiversity conservation or persistent organic pollutants. The congress will be held on the Faculty of Economics of the University of Girona, located in Montilivi, a city quarter situated just few minutes from the city center, conveniently connected by bus lines L8 and L11.
Resumo:
Throughout history, humans have cyclically return to their old traditions such as the organic orchards. Nowadays, these have been integrated into the modern cities and could supply fresh vegetables to the daily food improving human health. Organic orchards grow crops without pesticides and artificial fertilizers thus, they are respectful with the environment and guarantee the food's safety . In modern society, the application of new technology is a must, in this case to obtain an efficient irrigation. In order to monitor a proper irrigation and save water and energy, soil water content probes are used to measure soil water content. Among them, capacitive probes ,monitored with a specific data logger, are typically used. Most of them, specially the data loggers, are expensive and in many cases are not used. In this work, we have applied the open hardware Arduino to build and program a low cost datalogger for the programming of irrigation in an experimental organic orchard. Results showed that the application of such as low cost technology, which is easily available in the market and easy to understand, everyone can built and program its own device helping in managing water resources in organic orchards .
Resumo:
Se muestra los resultados de un studio con modelos de goteros enterrados donde se observa un efecto de autoreegulación del efecto de sobrepresión del agua en el suelo.
Resumo:
In pressure irrigation-water distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions.
Resumo:
BACKGROUND: In this work, the influence of two regulated deficit irrigation (RDI) treatments and three different rootstocks on the quality of pistachios was evaluated by analyzing different parameters: morphological analysis, physicochemical analysis and sensory analysis. RESULTS: The results obtained in terms of the choice of rootstock revealed that Pistacia atlantica had increased production yields, nut weight, mineral content, higher intensities of characteristic sensory attributes and a higher degree of consumer satisfaction, than the other rootstocks studied. Moreover, the results established that the application of RDI on pistachio cultivation had no significant influence on production yield, weight, size, colour, water activity or mineral composition. Furthermore, T1 treatment (stem water potential?-1.3 MPa) resulted in higher intensities of characteristic sensory attributes and a greater level of satisfaction among international consumers. CONCLUSION: These results confirm that the application of deficit irrigation (T1) contributes to an increase in overall product quality. Furthermore, Pistacia atlantica rootstock provided better yield and quality than the other rootstocks studied. © 2014 Society of Chemical Industry
Resumo:
Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions – central Chile, southwestern US, and south-central Spain – where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.
Resumo:
Water supply instability is one of the main risks faced by irrigation districts and farmers. Water procurement decision optimisation is essential in order to increase supply reliability and reduce costs. Water markets, such as spot purchases or water supply option contracts, can make this decision process more flexible. We analyse the potential interest in an option contract for an irrigation district that has access to several water sources. We apply a stochastic recursive mathematical programming model to simulate the water procurement decisions of an irrigation district?s board operating in a context of water supply uncertainty in south-eastern Spain. We analyse what role different option contracts could play in securing its water supply. Results suggest that the irrigation district would be willing to accept the proposed option contract in most cases subject to realistic values of the option contract financial terms. Of nine different water sources, desalination and the option contract are the main substitutes, where the use of either depends on the contract parameters. The contract premium and optioned volume are the variables that have a greater impact on the irrigation district?s decisions. Key words: Segura Basin, stochastic recursive programming, water markets, water supply option contract, water supply risk.
Resumo:
A method using iodine has been developed for the stabilisation of low softening point (SP) pitch fibres that avoids air stabilisation in the production of carbon fibres (CF). The interaction between iodine and petroleum pitches has been studied by following the changes in the hydrogen content, aromatic or aliphatic, during the heat treatment of iodine-treated pitch fibres. Two low SP petroleum pitches were used and the iodine-treated pitch fibres were analysed by TGA, DSC, DRIFT, XPS and SEM. The results confirm that using this novel method pitches with low SP can be used to prepare CF with two advantages, compared with conventional methods. The stabilisation time is considerably reduced and treatments to increase the SP, usually required when low SP pitches are used to prepare CF, can be avoided.
Resumo:
The “El Hondo Nature Park” is mainly composed of a series of irrigation channels and water reservoirs, subjected to various regimes of management as well as reed and vegetation control, thus creating a great variety of habitats and situations. To determine the influence of these habitats and management regimes on the local bird community, a set of characteristics of these channels and their surrounding area were analysed with a Correspondence Analysis (CA). The degree of reed development in channels and the presence in the surroundings of orchards and other reed formations were the most decisive factors to explain the probability of occurrence of reed birds and waterbirds, as well as bird species richness and abundance. Other bird species were not directly influenced by channel variables, but only by those of surrounding land uses.